New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine

Amino Acids ◽  
2013 ◽  
Vol 45 (5) ◽  
pp. 1055-1071 ◽  
Author(s):  
Hari S. Sharma ◽  
Aruna Sharma
1985 ◽  
Vol 58 (6) ◽  
pp. 1751-1754 ◽  
Author(s):  
B. M. Hitzig ◽  
M. P. Kneussl ◽  
V. Shih ◽  
R. D. Brandstetter ◽  
H. Kazemi

To assess the role of brain amino acid neurotransmitters in the breath hold of diving animals, concentrations of free amino acids present in the brains of turtles immediately after 2 h of apneic diving (at 20 degrees C) were measured. Additionally, the same measurements were performed on four other groups of animals subjected to 2 h of hypercapnia (8% CO2 in air), anoxia (N2 breathing), anoxia plus hypercapnia (8% CO2–92% N2), or air breathing (control). Significant changes in the concentrations of the inhibitory amino acid neurotransmitters known to affect respiration [gamma-aminobutyric acid (GABA) and taurine] were seen. GABA increased significantly in those animals subjected to anoxia, whereas taurine decreased significantly in the diving animals and increased significantly in those subjected to anoxia plus hypercapnia. These results suggest that the attenuated central ventilatory drive during diving in these animals may be related to alterations in brain concentrations of GABA and taurine.


2010 ◽  
Vol 4 (2) ◽  
pp. 271-279
Author(s):  
Onrawee Khongsombat ◽  
Boonyong Tantisira ◽  
Mayuree H. Tantisira

Abstract Background: N(2-propylpentanoyl) urea (VPU) is a new valproic acid (VPA) analog with higher anticonvulsant activity than its parent compound in various animal models including seizure acutely induced by pilocarpine. Objective: Investigate its effects on hippocampal amino acid neurotransmitters in spontaneous recurrent seizure (SRS) rats. Methods: Pilocarpine hydrochloride was used to induce status epilepticus (SE). Animals were visually observed for two hours/day for an episode of SRS for six weeks. Microdialysis experiment was performed to detect hippocampal amino acid neurotransmitters on those rats that developed SRS. Results: In comparison to normal rats, hippocampal glutamate, gamma-aminobutyric acid (GABA), and glycine, significantly increased in SRS rats. Occurrence of SRS in the faces of increased level of inhibitory neurotransmitters suggests the key role played by glutamate in the genesis and control of SRS. Based on the observation in pilocarpine-induced SE, the level of glutamate in SRS rats significantly decreased by a clinically effective anticonvulsant, VPA (300 and 600 mg/kg, i.p). Similar profile on hippocampal glutamate was also exhibited by VPU (50 and 100 mg/kg, i.p.). Conclusion: The possible role of VPU in controlling seizure in SRS rats and subsequently human temporal lobe epilepsy as VPA was suggested.


Sign in / Sign up

Export Citation Format

Share Document