scholarly journals Urinary excretion of amino acids and their advanced glycation end-products (AGEs) in adult kidney transplant recipients with emphasis on lysine: furosine excretion is associated with cardiovascular and all-cause mortality

Amino Acids ◽  
2021 ◽  
Author(s):  
Svetlana Baskal ◽  
Adrian Post ◽  
Daan Kremer ◽  
Alexander Bollenbach ◽  
Stephan J. L. Bakker ◽  
...  

AbstractArginine (Arg) and lysine (Lys) moieties of proteins undergo various post-translational modifications (PTM) including enzymatic NG- and Nε-methylation and non-enzymatic NG- and Nε-glycation. In a large cohort of stable kidney transplant recipients (KTR, n = 686), high plasma and low urinary concentrations of asymmetric dimethylarginine (ADMA), an abundant PTM metabolite of Arg, were associated with cardiovascular and all-cause mortality. Thus, the prediction of the same biomarker regarding mortality may depend on the biological sample. In another large cohort of stable KTR (n = 555), higher plasma concentrations of Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), two advanced glycation end-products (AGEs) of Lys, were associated with higher cardiovascular mortality. Yet, the associations of urinary AGEs with mortality are unknown. In the present study, we measured 24 h urinary excretion of Lys, CML, and furosine in 630 KTR and 41 healthy kidney donors before and after donation. Our result indicate that lower urinary CML and lower furosine excretion rates are associated with higher mortality in KTR, thus resembling the associations of ADMA. Lower furosine excretion rates were also associated with higher cardiovascular mortality. The 24 h urinary excretion rate of amino acids and their metabolites decreased post-donation (varying as little as − 24% for CEL, and as much as − 62% for ADMA). For most amino acids, the excretion rate was lower in KTR than in donors pre-donation [except for S-(1-carboxyethyl)-l-cysteine (CEC) and NG-carboxyethylarginine (CEA)]. Simultaneous GC–MS measurement of free amino acids, their PTM metabolites and AGEs in urine is a non-invasive approach in kidney transplantation.

Amino Acids ◽  
2021 ◽  
Author(s):  
Adrian Post ◽  
Alexander Bollenbach ◽  
Stephan J. L. Bakker ◽  
Dimitrios Tsikas

AbstractArginine residues in proteins can be singly or doubly methylated post-translationally. Proteolysis of arginine-methylated proteins provides monomethyl arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). ADMA and SDMA are considered cardiovascular risk factors, with the underlying mechanisms being not yet fully understood. SDMA lacks appreciable metabolism and is almost completely eliminated by the kidney, whereas ADMA is extensively metabolized to dimethylamine (DMA), with a minor ADMA fraction of about 10% being excreted unchanged in the urine. Urinary DMA and ADMA are useful measures of whole-body asymmetric arginine-dimethylation, while urinary SDMA serves as a whole-body measure of symmetric arginine-dimethylation. In renal transplant recipients (RTR), we previously found that higher plasma ADMA concentrations and lower urinary ADMA and SDMA concentrations were associated with a higher risk of all-cause mortality. Yet, in this RTR collective, no data were available for urinary DMA. For the present study, we additionally measured the excretion rate of DMA in 24-h collected urine samples of the RTR and of healthy kidney donors in the cohort, with the aim to quantitate whole-body asymmetric (ADMA, DMA) and symmetric (SDMA) arginine-dimethylation. We found that lower DMA excretion rates were associated with higher all-cause mortality, yet not with cardiovascular mortality. In the healthy donors, kidney donation was associated with considerable decreases in ADMA (by − 39%, P < 0.0001) and SDMA (by − 21%, P < 0.0001) excretion rates, yet there was no significant change in DMA (by − 9%, P = 0.226) excretion rate. Our results suggest that protein-arginine dimethylation is altered in RTR compared to healthy kidney donors and that it is pronouncedly shifted from symmetric to asymmetric arginine-dimethylation, with whole-body protein-arginine dimethylation being almost unaffected.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3229
Author(s):  
Kamilla Stach ◽  
Wojciech Stach ◽  
Katarzyna Augoff

Vitamin B6 is a fascinating molecule involved in the vast majority of changes in the human body because it is a coenzyme involved in over 150 biochemical reactions. It is active in the metabolism of carbohydrates, lipids, amino acids, and nucleic acids, and participates in cellular signaling. It is an antioxidant and a compound with the ability to lower the advanced glycation end products (AGE) level. In this review, we briefly summarize its involvement in biochemical pathways and consider whether its deficiency may be associated with various diseases such as diabetes, heart disease, cancer, or the prognosis of COVID-19.


Author(s):  
Pornsucha Palaseweenun ◽  
Esther A. Hagen-Plantinga ◽  
J. Thomas Schonewille ◽  
Gerrit Koop ◽  
Claire Butre ◽  
...  

2008 ◽  
Vol 12 (3) ◽  
pp. 222-224 ◽  
Author(s):  
M. P. de la Maza ◽  
A. Bravo ◽  
L. Leiva ◽  
V. Gattas ◽  
G. Barrera ◽  
...  

2021 ◽  
Vol 52 (1) ◽  
pp. 8-16
Author(s):  
Jianping Jiang ◽  
Yuanyuan Zhang ◽  
Jianghua Chen ◽  
Xiaobing Yang ◽  
Changlin Mei ◽  
...  

Background: The relation of tissue and circulating advanced glycation end products (AGEs) with mortality in hemodialysis (HD) patients remains inconclusive. We aimed to investigate the association of serum AGEs (CML) and tissue AGEs estimated by skin autofluorescence (SAF) with all-cause and cardiovascular disease (CVD) mortality, and examine the possible modifiers for the association in HD patients with by far the largest sample size in any similar studies. Methods: A total of 1,634 HD patients were included from the China Cooperative Study on Dialysis (CCSD), a multicenter prospective cohort study. The primary and secondary outcomes were all-cause mortality and CVD mortality, respectively. Results: The median follow-up duration was 5.2 years. Overall, there was a positive relation of baseline SAF levels with the risk of all-cause mortality (per 1 AU increment, adjusted hazard ratio (HR), 1.30; 95% confidence interval (CI): 1.12, 1.50) and CVD mortality (per 1 AU increment, adjusted HR, 1.36; 95% CI: 1.14, 1.62). Moreover, a stronger positive association between baseline SAF (per 1 AU increment) and all-cause mortality was found in participants with shorter dialysis vintage, or lower C-reactive protein levels (Both p interactions <0.05). Nevertheless, there was no significant association between serum CML and the risk of mortality. Conclusions: In patients undergoing long-term HD, baseline SAF, but not serum CML, was significantly associated with the risk of all-cause and CVD death.


Sign in / Sign up

Export Citation Format

Share Document