scholarly journals Micro-CT evaluation of the cortical bone micro-architecture in the anterior and posterior maxilla and the maxillary sinus floor

2018 ◽  
Vol 23 (3) ◽  
pp. 1453-1459 ◽  
Author(s):  
Kristina Bertl ◽  
Danijel Domic ◽  
Lena Hirtler ◽  
Patrick Heimel ◽  
Azadeh Esfandeyari ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 438
Author(s):  
Horia Mihail Barbu ◽  
Stefania Andrada Iancu ◽  
Violeta Hancu ◽  
Daniel Referendaru ◽  
Joseph Nissan ◽  
...  

Background: The purpose of the study was to analyze the efficacy of platelet-rich fibrin (PRF) as a single augmentation material for complicated cases of maxillary sinus floor elevation, resulting from membrane perforation or previous infections. Methods: Implant insertion in the posterior region of the maxilla was simultaneously performed with maxillary sinus floor augmentation. Schneiderian membrane elevation can be accompanied by extremely serious sinus membrane perforation, due to accidental tearing or intended incision for mucocele removal. PRFs were placed in the sinus cavity both for membrane sealing and sinus floor grafting. Radiological, histological and micro-CT analyses were performed. Implant survival was assessed every 6 months for 1 to 4 years, with a mean follow up of 1.8 years, after prosthetic loading. Radiological examinations were performed on CBCT at 9 and 12 and 36 months postoperatively and revealed improved degrees of radiopacity. Results: 19 implants were simultaneously placed in the course of nine maxillary sinus floor augmentation surgeries, with successful outcomes in terms of bone grafting and implant integration. New bone formation was evidenced 12 months postoperatively on radiological examination, micro-CT analysis, and histological analysis of a harvested bone segment from the augmented maxillary sinus. The mean gain in bone height of the sinus floor augmentation was 6.43 mm, with a maximum of 9 mm. The mean amount of vital bone obtained from histologic assessment was 52.30%, while bone volume/tissue volume ratio in micro-CT 3D had a mean of 50.32%. Conclusions: PRF may be considered as an alternative treatment for a single surgery of sinus augmentation with simultaneous implant placement, even in complicated cases with significant sinus membrane tearing.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Lu Yin ◽  
Zhi-xuan Zhou ◽  
Ming Shen ◽  
Ning Chen ◽  
Fei Jiang ◽  
...  

Insufficient bone height in the posterior maxilla is a challenging problem in dental implantation. Bio-Oss, though routinely used in maxillary sinus floor elevation (MSFE), is not osteoinductive. Human amniotic mesenchymal cells (hAMSCs) isolated from placental tissues have potential for multidifferentiation and immunomodulatory properties and can be easily obtained without the need for invasive procedures and without ethical concerns. This is the first study to use hAMSCs to improve implant osseointegration and bone regeneration after MSFE. Human AMSCs were loaded into a fibrin gel and injected into rabbit MSFE models. The rabbits were assigned to four groups (n=3 per group), i.e., the control group, the hAMSC group, the Bio-Oss group, and the hAMSC/Bio-Oss group. The animals were sacrificed at postsurgery for four and twelve weeks and evaluated by histology and immunohistochemistry. Bone volume, bone volume/tissue volume, bone-to-implant contact ratio, and vessel-like structures in the hAMSC/Bio-Oss group were significantly better than those in other groups in the peri-implant and augmented areas. Immunofluorescence staining showed that alkaline phosphatase (ALP) activities of two hAMSC groups were higher than those of the other two groups. Sequential fluorescent labeling was performed in all of the 12-week groups. Observations showed that hAMSCs accelerated mineralized deposition rates on implant surfaces and in bone-augmented areas. These data demonstrated that hAMSCs could enhance implant osseointegration and bone regeneration after MSFE and might be used to optimize dental implantation in the future.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Mario Beretta ◽  
Marco Cicciù ◽  
Ennio Bramanti ◽  
Carlo Maiorana

Maxillary sinus floor elevation via a lateral approach is a predictable technique to increase bone volume of the edentulous posterior maxilla and consequently for dental implants placement. The sinus floor is elevated and it can be augmented with either autologous or xenogeneic bone grafts following an opening bone window created on the facial buccal wall. Maxillary septa are walls of cortical bone within the maxillary sinus. The septa shape has been described as an inverted gothic arch arising from the inferior or lateral walls of the sinus and may even divide the sinus into two or more cavities. Some authors have reported a higher prevalence of septa in atrophic edentulous areas than in nonatrophic ones. Radiographic identification of these structures is important in order to perform the right design of the lateral window during sinus lift. Aim of this investigation is to highlight the correct steps for doing sinus lift surgery in presence of those anatomic variations. Clinicians should always perform clinical and radiographic diagnosis in order to avoid complications related to the sinus lift surgery.


2017 ◽  
Vol 28 (3) ◽  
pp. 385-390 ◽  
Author(s):  
Adriana Dibo Cruz ◽  
Guilherme Alvares Peixoto ◽  
Marcelo Freitas Aguiar ◽  
Gabriela Alessandra Cruz Galhardo Camargo ◽  
Nicolas Homs

Abstract This study aimed to assess the performance of surgeons in determining the amount of graft material required for maxillary sinus floor augmentation in a preoperative analysis using cone-beam computed tomography images. A convenience sample of 10 retrospective CBCT exams (i-CAT®) was selected. Scans of the posterior maxilla area with an absence of at least one tooth and residual alveolar bone with an up to 5 mm height were used. Templates (n=20) contained images of representative cross-sections in multiplanar view. Ten expert surgeons voluntarily participated as appraisers of the templates for grafting surgical planning of a 10 mm long implant. Appraisers could choose a better amount of graft material using scores: 0) when considered grafting unnecessary, 1) for 0.25 g in graft material, 2) for 0.50 g, 3) for 1.00 g and 4) for 1.50 g or more. Reliability of the response pattern was analyzed using Cronbach’s a. Wilcoxon and Mann-Whitney tests were performed to compare scores. Regression analysis was performed to evaluate whether the volume of sinuses (mm3) influenced the choose of scores. In the reliability analysis, all values were low and the score distribution was independent of the volume of the maxillary sinuses (p>0.05), which did not influence choosing the amount of graft material. Surgeons were unreliable to determine the best amount of graft material for the maxillary sinus floor augmentation using only CBCT images. Surgeons require auxiliary diagnostic tools to measure the volume associated to CBCT exams in order to perform better.


2017 ◽  
Vol 1 (2) ◽  

Maxillary sinus floor augmentation (also termed sinus lift, sinus graft, sinus augmentation or sinus procedure) is a surgical procedure which aims to increase the amount of bone in the posterior maxilla (upper jaw bone), in the area of the premolar and molar teeth, by lifting the lower Schneiderian membrane (sinus membrane) and placing a bone graft [2]. When a tooth is lost the alveolar process begins to remodel. The vacant tooth socket collapses as it heals leaving an edentulous (toothless) area, termed a ridge [3]. This collapse causes a loss in both height and width of the surrounding bone. In addition, when a maxillary molar or premolar is lost, the floor of the maxillary sinus expands, which further diminishes the thickness of the underlying bone. Overall, this leads to a loss in volume of bone that is available for implantation of dental implants, which rely on osseointegration (bone integration), to replace missing teeth [1]. The goal of the sinus lift is to graft extra bone into the maxillary sinus, so more bone is available to support a dental implant. A Special form of Reconstruction of bone, especially changing the vertical structure of the maxillary Sinus floor in the upper jaw and the establishment of the mucous membranes of Sinusitis purpose of dental implant called Sinuslift [4, 5, 6 & 8]. Distance-maxillary sinus is often so low that an implant can not be included in stable long enough. With the incorporation of bone material or bone grafting, maxillary sinus floor, ‘grow’ and that this level can be implanted implants safe. Sinuslift distinguish Extern and Intern [9,10].


Sign in / Sign up

Export Citation Format

Share Document