scholarly journals Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder

Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.

2015 ◽  
Vol 1120-1121 ◽  
pp. 115-118 ◽  
Author(s):  
Yong Hoon Cho ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

The electrochemical properties niobium dioxide (NbO2) was investigated as a negative electrode material for lithium ion batteries. The NbO2electrode showed a large irreversible capacity and small discharge capacity. The results of X-ray photoelectron spectroscopy indicate that the poor electrode performance of NbO2may be caused by niobium pentoxide (Nb2O5) formed on the surface of active material. The Nb2O5could be removed by chemical etching to some extent, thus improving the electrode performance.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2732-2735
Author(s):  
Maha Yusuf ◽  
Jacob LaManna ◽  
Partha Paul ◽  
David Agyeman-Budu ◽  
Michael Toney ◽  
...  

2020 ◽  
Vol 7 (13) ◽  
pp. 2831-2837
Author(s):  
Qingbo Xia ◽  
Pierre J. P. Naeyaert ◽  
Maxim Avdeev ◽  
Siegbert Schmid ◽  
Hongwei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document