scholarly journals Assessment of the heterogeneity of hydraulic properties in gravelly outwash plains: a regionally scaled sedimentological analysis in the Munich gravel plain, Germany

2020 ◽  
Vol 28 (8) ◽  
pp. 2657-2674
Author(s):  
Markus Theel ◽  
Peter Huggenberger ◽  
Kai Zosseder

AbstractThe favorable overall conditions for the utilization of groundwater in fluvioglacial aquifers are impacted by significant heterogeneity in the hydraulic conductivity, which is related to small-scale facies changes. Knowledge of the spatial distribution of hydraulically relevant hydrofacies types (HF-types), derived by sedimentological analysis, helps to determine the hydraulic conductivity distribution and thus contribute to understanding the hydraulic dynamics in fluvioglacial aquifers. In particular, the HF-type “open framework gravel (OW)”, which occurs with the HF-type “bimodal gravel (BM)” in BM/OW couplings, has an intrinsically high hydraulic conductivity and significantly impacts hydrogeological challenges such as planning excavation-pit drainage or the prognosis of plumes. The present study investigates the properties and spatial occurrence of HF-types in fluvioglacial deposits at regional scale to derive spatial distribution trends of HF-types, by analyzing 12 gravel pits in the Munich gravel plain (southern Germany) as analogues for outwash plains. The results are compared to the reevaluation of 542 pumping tests. Analysis of the HF-types and the pumping test data shows similar small-scale heterogeneities of the hydraulic conductivity, superimposing large-scale trends. High-permeability BM/OW couples and their dependence on recognizable discharge types in the sedimentary deposits explain sharp-bounded small-scale heterogeneities in the hydraulic conductivity distribution from 9.1 × 10−3 to 2.2 × 10−4 m/s. It is also shown that high values of hydraulic conductivity can be interpolated on shorter distance compared to lower values. While the results of the HF-analysis can be transferred to other fluvioglacial settings (e.g. braided rivers), regional trends must be examined with respect to the surrounding topography.

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3376
Author(s):  
Pierre Claver Ngenzebuhoro ◽  
Alain Dassargues ◽  
Tarik Bahaj ◽  
Philippe Orban ◽  
Ilias Kacimi ◽  
...  

The study area, in northwestern Burundi, is an alluvial plain consisting of fine clayey sands and coarse sands with mixed lithology. The aquifer of the lower Rusizi plain could be considered as confined under a clay layer. A 2D horizontal groundwater flow model was developed under steady-state conditions using the Modflow software. The study aims to determine the most productive areas of this confined alluvial aquifer and the main aquifer inflow and outflow values together with the recharge and river–aquifer interactions. The groundwater potential is dependent on the spatial distribution of hydraulic conductivity and aquifer thickness values providing the local transmissivity values. The calibrated model made it possible to assess the spatial distribution of the hydraulic conductivity values at the regional scale, which ranged from 6 × 10−6 (contact between alluvial plain and Precambrian basement) to 7.5 × 10−3 m/s (coastal barriers). The results also provided the computed groundwater flow directions, and an estimation of the groundwater levels in areas not yet investigated by drilling. The results of the computed groundwater flow budget allowed us to deduce that recharge and river–aquifer interaction constitute the main inflow while the downwards boundaries (where piezometric heads could be prescribed) are the main zones where outflows occur. The results of this model can be used in the planning of pumping test programs, locating areas with high groundwater potential to plan water supply for different private and public users. This predictive tool will contribute to the resolution of problems related to the use and integrated management of the groundwater resource in this part of Burundi.


2005 ◽  
Vol 42 (4) ◽  
pp. 1212-1220 ◽  
Author(s):  
Robert P Chapuis ◽  
Véronique Dallaire ◽  
Denis Marcotte ◽  
Michel Chouteau ◽  
Nelson Acevedo ◽  
...  

This paper presents the evaluation of scale effects for the hydraulic conductivity, k, of a sand. Data were obtained using several methods at a site that was densely instrumented with piezometers within an area of about 100 m × 100 m. The 3.1–3.6 m thick sand deposit rests on a thick, nonfissured Champlain Sea clay deposit. At the small scale, local k values were obtained from the grain-size curves of sand samples and also from ground-penetrating radar surveys. At the intermediate scale, k values were obtained from field variable-head tests using piezometers. At the large scale, k values were obtained from pumping-test drawdowns in steady-state conditions. In this sand aquifer, the careful evaluations at three scales gave similar narrow distributions for the hydraulic conductivity, and therefore no scale effect is evidenced.Key words: hydraulic conductivity, sand, scale effect, gradation, monitoring well, pumping.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 68 ◽  
Author(s):  
Dorrik Stow ◽  
Zeinab Smillie

The distinction between turbidites, contourites and hemipelagites in modern and ancient deep-water systems has long been a matter of controversy. This is partly because the processes themselves show a degree of overlap as part of a continuum, so that the deposit characteristics also overlap. In addition, the three facies types commonly occur within interbedded sequences of continental margin deposits. The nature of these end-member processes and their physical parameters are becoming much better known and are summarised here briefly. Good progress has also been made over the past decade in recognising differences between end-member facies in terms of their sedimentary structures, facies sequences, ichnofacies, sediment textures, composition and microfabric. These characteristics are summarised here in terms of standard facies models and the variations from these models that are typically encountered in natural systems. Nevertheless, it must be acknowledged that clear distinction is not always possible on the basis of sedimentary characteristics alone, and that uncertainties should be highlighted in any interpretation. A three-scale approach to distinction for all deep-water facies types should be attempted wherever possible, including large-scale (oceanographic and tectonic setting), regional-scale (architecture and association) and small-scale (sediment facies) observations.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zengguang Xu ◽  
Xue Wang ◽  
Junrui Chai ◽  
Yuan Qin ◽  
Yanlong Li

Seepage problems exist in water conservancy projects, groundwater research, and geological research, and hydraulic conductivity is an important factor that affects the seepage field. This study investigates the heterogeneity of hydraulic conductivity. Kriging methods are used to simulate the spatial distribution of hydraulic conductivity, and the application of resistivity and grain size is used to obtain hydraulic conductivity. The results agree with the experimental pumping test results, which prove that the distribution of hydraulic conductivity can be obtained economically and efficiently and in a complex and wide area.


2021 ◽  
Vol 9 ◽  
Author(s):  
Line Rouyet ◽  
Karianne Staalesen Lilleøren ◽  
Martina Böhme ◽  
Louise Mary Vick ◽  
Reynald Delaloye ◽  
...  

Mountain slopes in periglacial environments are affected by frost- and gravity-driven processes that shape the landscape. Both rock glaciers and rockslides have been intensively inventoried worldwide. Although most inventories are traditionally based on morphologic criteria, kinematic approaches based on satellite remote sensing have more recently been used to identify moving landforms at the regional scale. In this study, we developed simplified Interferometric Synthetic Aperture Radar (InSAR) products to inventory ground velocity in a region in Northern Norway covering approximately 7,500 km2. We used a multiple temporal baseline InSAR stacking procedure based on 2015–2019 ascending and descending Sentinel-1 images to take advantage of a large set of interferograms and exploit different detection capabilities. First, moving areas are classified according to six velocity brackets, and morphologically associated to six landform types (rock glaciers, rockslides, glaciers/moraines, talus/scree deposits, solifluction/cryoturbation and composite landforms). The kinematic inventory shows that the velocity ranges and spatial distribution of the different types of slope processes vary greatly within the study area. Second, we exploit InSAR to update pre-existing inventories of rock glaciers and rockslides in the region. Landform delineations and divisions are refined, and newly detected landforms (54 rock glaciers and 20 rockslides) are incorporated into the databases. The updated inventories consist of 414 rock glacier units within 340 single- or multi-unit(s) systems and 117 rockslides. A kinematic attribute assigned to each inventoried landform documents the order of magnitude of the creep rate. Finally, we show that topo-climatic variables influence the spatial distribution of the rock glaciers. Their mean elevation increases toward the continental interior with a dominance of relict landforms close to the land-sea margin and an increased occurrence of active landforms further inland. Both rock glaciers and rockslides are mostly located on west-facing slopes and in areas characterised by strongly foliated rocks, which suggests the influence of geological preconditioning factors. The study demonstrates the value of semi-quantitative InSAR products to characterise kinematic information at large scale and exploit the results for periglacial research. It highlights the complementarity of both kinematic and morphologic approaches for inventorying slope processes.


2016 ◽  
Vol 4 (2) ◽  
pp. 132-148 ◽  
Author(s):  
Francis P. McManamon ◽  
John Doershuk ◽  
William D. Lipe ◽  
Tom McCulloch ◽  
Christopher Polglase ◽  
...  

AbstractPublic agencies at all levels of government and other organizations that manage archaeological resources often face the problem of many undertakings that collectively impact large numbers of individually significant archaeological resources. Such situations arise when an agency is managing a large area, such as a national forest, land management district, park unit, wildlife refuge, or military installation. These situations also may arise in regard to large-scale development projects, such as energy developments, highways, reservoirs, transmission lines, and other major infrastructure projects that cover substantial areas. Over time, the accumulation of impacts from small-scale projects to individual archaeological resources may degrade landscape or regional-scale cultural phenomena. Typically, these impacts are mitigated at the site level without regard to how the impacts to individual resources affect the broader population of resources. Actions to mitigate impacts rarely are designed to do more than avoid resources or ensure some level of data recovery at single sites. Such mitigation activities are incapable of addressing research question at a landscape or regional scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boguslaw Usowicz ◽  
Jerzy Lipiec

AbstractSaturated hydraulic conductivity (K) is a key property for evaluating soil water movement and quality. Most studies on spatial variability of K have been performed soil at a field or smaller scale. Therefore, the aim of this work was to assess (quantify) the spatial distribution of K at the larger regional scale in south-eastern Poland and its relationship with other soil properties, including intrinsic sand, silt, and clay contents, relatively stable organic carbon, cation exchange capacity (CEC) and temporally variable water content (WC), total porosity (FI), and dry bulk density (BD) in the surface layer (0–20 cm). The spatial relationships were assessed using a semivariogram and a cross-semivariogram. The studied region (140 km2) with predominantly permeable sandy soils with low fertility and productivity is located in the south-eastern part of Poland (Podlasie region). The mean sand and organic carbon contents are 74 and 0.86 and their ranges (in %) are 45–95 and 0.002–3.75, respectively. The number of individual samples varied from 216 to 228 (for K, WC, BD, FI) to 691 for the other soil properties. The best fitting models were adjusted to the empirical semivariogram (exponential) and the cross-semivariogram (exponential, Gaussian, or linear) used to draw maps with kriging. The results showed that, among the soil properties studied, K was most variable (coefficient of variation 77.3%) and significantly (p < 0.05) positively correlated with total porosity (r = 0.300) and negatively correlated with soil bulk density (r = – 0.283). The normal or close to the normal distribution was obtained by natural logarithmic and root square transformations. The mean K was 2.597 m day−1 and ranged from 0.01 up to 11.54 m day−1. The spatial autocorrelation (range) of K in the single (direct) semivariograms was 0.081° (8.1 km), while it favourably increased up to 0.149°–0.81° (14.9–81 km) in the cross-semivariograms using the OC contents, textural fractions, and CEC as auxiliary variables. The generated spatial maps allowed outlining two sub-areas with predominantly high K above 3.0 m day−1 in the northern sandier (sand content > 74%) and less silty (silt content < 22%) part and, with lower K in the southern part of the study region. Generally, the spatial distribution of the K values in the study region depended on the share of individual intrinsic textural fractions. On the other hand, the ranges of the spatial relationship between K and the intrinsic and relatively stable soil properties were much larger (from ~ 15 to 81 km) than between K and the temporally variable soil properties (0.3–0.9 km). This knowledge is supportive for making decisions related to land management aimed at alteration of hydraulic conductivity to improve soil water resources and crop productivity and reduce chemical leaching.


2019 ◽  
Vol 76 (6) ◽  
pp. 1601-1609 ◽  
Author(s):  
Tania Mendo ◽  
Sophie Smout ◽  
Tommaso Russo ◽  
Lorenzo D’Andrea ◽  
Mark James

Abstract Analysis of data from vessel monitoring systems and automated identification systems in large-scale fisheries is used to describe the spatial distribution of effort, impact on habitats, and location of fishing grounds. To identify when and where fishing activities occur, analysis needs to take account of different fishing practices in different fleets. Small-scale fisheries (SSFs) vessels have generally been exempted from positional reporting requirements, but recent developments of compact low-cost systems offer the potential to monitor them effectively. To characterize the spatial distribution of fishing activities in SSFs, positions should be collected with sufficient frequency to allow detection of different fishing behaviours, while minimizing demands for data transmission, storage, and analysis. This study sought to suggest optimal rates of data collection to characterize fishing activities at appropriate spatial resolution. In a SSF case study, on-board observers collected Global Navigation Satellite System (GNSS) position and fishing activity every second during each trip. In analysis, data were re-sampled to lower temporal resolutions to evaluate the effect on the identification of number of hauls and area fished. The effect of estimation at different spatial resolutions was also explored. Consistent results were found for polling intervals &lt;60 s in small vessels and &lt;120 in medium and large vessels. Grid cell size of 100 × 100 m resulted in best estimations of area fished. Remote collection and analysis of GNSS or equivalent data at low cost and sufficient resolution to infer small-scale fisheries activities. This has significant implications globally for sustainable management of these fisheries, many of which are currently unregulated.


Sign in / Sign up

Export Citation Format

Share Document