scholarly journals Effects of early life and current housing on sensitivity to reward loss in a successive negative contrast test in pigs

2019 ◽  
Vol 23 (1) ◽  
pp. 121-130 ◽  
Author(s):  
L. Luo ◽  
I. Reimert ◽  
E. A. M. Graat ◽  
S. Smeets ◽  
B. Kemp ◽  
...  

Abstract Animals in a negative affective state seem to be more sensitive to reward loss, i.e. an unexpected decrease in reward size. The aim of this study was to investigate whether early-life and current enriched vs. barren housing conditions affect the sensitivity to reward loss in pigs using a successive negative contrast test. Pigs (n = 64 from 32 pens) were housed in barren or enriched conditions from birth onwards, and at 7 weeks of age experienced either a switch in housing conditions (from barren to enriched or vice versa) or not. Allotting pigs to the different treatments was balanced for coping style (proactive vs. reactive). One pig per pen was trained to run for a large reward and one for a small reward. Reward loss was introduced for pigs receiving the large reward after 11 days (reward downshift), i.e. from then onwards, they received the small reward. Pigs housed in barren conditions throughout life generally had a lower probability and higher latency to get the reward than other pigs. Proactive pigs ran overall slower than reactive pigs. After the reward downshift, all pigs ran slower. Nevertheless, reward downshift increased the latency and reduced the probability to get to the reward, but only in pigs exposed to barren conditions in early life, which thus were more sensitive to reward loss than pigs from enriched early life housing. In conclusion, barren housed pigs seemed overall less motivated for the reward, and early life housing conditions had long-term effects on the sensitivity to reward loss.

2012 ◽  
Vol 234 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Emma N. Mitchell ◽  
Hugh M. Marston ◽  
David J. Nutt ◽  
Emma S.J. Robinson

2004 ◽  
Vol 94 (2) ◽  
pp. 683-686 ◽  
Author(s):  
Richard S. Calef ◽  
Michael C. Choban ◽  
Katherine R. Glenney ◽  
Ruth A. Calef ◽  
Errika M. Mace ◽  
...  

During preshift, one experimental group of rats was given a large magnitude of food reward following a traversal of a straight alley and during a goalbox placement, while the other experimental group was given a small reward during goalbox placement and a large reward following a run. During postshift, all experimental groups were given a small reward of food following a traversal down the runway and during a goalbox placement. A control group was maintained on small reward during placements and following a traversal throughout the study. Only the group who received preshift large reward during placement and following a runway response ran slower to small reward during postshift than the control group maintained on small reward (negative contrast effect).


1981 ◽  
Vol 49 (1) ◽  
pp. 335-338 ◽  
Author(s):  
David T. Goomas

Three groups of 5 rats were administered either large reward (10 pellets), small reward (2 pellets), or multiple shifts (Iarge-small-large-etc.) in an alleyway. The multiple-shift group received a total of 7 large and 6 small phases of reinforcement. Early in training the shifted group exhibited positive contrast effect to a shift to large reward and negative contrast effect to a shift to small reward. Later in training, the same group showed neither effect perhaps because experience with the shift provided a smaller discrepancy between the upshifts and downshifts in magnitude of reward.


Author(s):  
Maria Fitzgerald ◽  
Michael W. Salter

The influence of development and sex on pain perception has long been recognized but only recently has it become clear that this is due to specific differences in underlying pain neurobiology. This chapter summarizes the evidence for mechanistic differences in male and female pain biology and for functional changes in pain pathways through infancy, adolescence, and adulthood. It describes how both developmental age and sex determine peripheral nociception, spinal and brainstem processing, brain networks, and neuroimmune pathways in pain. Finally, the chapter discusses emerging evidence for interactions between sex and development and the importance of sex in the short- and long-term effects of early life pain.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 774
Author(s):  
Hung-Ming Chang ◽  
Hsing-Chun Lin ◽  
Hsin-Lin Cheng ◽  
Chih-Kai Liao ◽  
To-Jung Tseng ◽  
...  

Early-life sleep deprivation (ESD) is a serious condition with severe cognitive sequelae. Considering hippocampus plays an essential role in cognitive regulation, the present study aims to determine whether melatonin, a neuroendocrine beard with significant anti-oxidative activity, would greatly depress the hippocampal oxidative stress, improves the molecular machinery, and consequently exerts the neuro-protective effects following ESD. Male weanling Wistar rats (postnatal day 21) were subjected to ESD for three weeks. During this period, the animals were administered normal saline or melatonin (10 mg/kg) via intraperitoneal injection between 09:00 and 09:30 daily. After three cycles of ESD, the animals were kept under normal sleep/wake cycle until they reached adulthood and were sacrificed. The results indicated that ESD causes long-term effects, such as impairment of ionic distribution, interruption of the expressions of neurotransmitters and receptors, decreases in the levels of several antioxidant enzymes, and impairment of several signaling pathways, which contribute to neuronal death in hippocampal regions. Melatonin administration during ESD prevented these effects. Quantitative evaluation of cells also revealed a higher number of neurons in the melatonin-treated animals when compared with the saline-treated animals. As the hippocampus is critical to cognitive activity, preserving or even improving the hippocampal molecular machinery by melatonin during ESD not only helps us to better understand the underlying mechanisms of ESD-induced neuronal dysfunction, but also the therapeutic use of melatonin to counteract ESD-induced neuronal deficiency.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. H. Miao ◽  
W. X. Zhou ◽  
R. Y. Cheng ◽  
H. J. Liang ◽  
F. L. Jiang ◽  
...  

Abstract Background Accumulating evidence have shown that the intestinal microbiota plays an important role in prevention of host obesity and metabolism disorders. Recent studies also demonstrate that early life is the key time for the colonization of intestinal microbes in host. However, there are few studies focusing on possible association between intestinal microbiota in the early life and metabolism in adulthood. Therefore the present study was conducted to examine whether the short term antibiotic and/or probiotic exposure in early life could affect intestinal microbes and their possible long term effects on host metabolism. Results A high-fat diet resulted in glucose and lipid metabolism disorders with higher levels of visceral fat rate, insulin-resistance indices, and leptin. Exposure to ceftriaxone in early life aggravated the negative influences of a high-fat diet on mouse physiology. Orally fed TMC3115 protected mice, especially those who had received treatment throughout the whole study, from damage due to a high-fat diet, such as increases in levels of fasting blood glucose and serum levels of insulin, leptin, and IR indices. Exposure to ceftriaxone during the first 2 weeks of life was linked to dysbiosis of the fecal microbiota with a significant decrease in the species richness and diversity. However, the influence of orally fed ceftriaxone on the fecal microbiota was limited to 12 weeks after the termination of treatment. Of note, at week 12 there were still some differences in the composition of intestinal microbiota between mice provided with high fat diet and antibiotic exposure and those only fed a high fat diet. Conclusions These results indicated that exposure to antibiotics, such as ceftriaxone, in early life may aggravate the negative influences of a high-fat diet on the physiology of the host animal. These results also suggest that the crosstalk between the host and their intestinal microbiota in early life may be more important than that in adulthood, even though the same intestinal microbes are present in adulthood.


2021 ◽  
Vol 521 ◽  
pp. 111125
Author(s):  
Lucy Babicola ◽  
Rossella Ventura ◽  
Sebastian Luca D'Addario ◽  
Donald Ielpo ◽  
Diego Andolina ◽  
...  

2019 ◽  
Vol 79 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Marion Rincel ◽  
Muriel Darnaudéry

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut–brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut–brain axis. Further research is required to understand the complex mechanisms underlying gut–brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.


BIO-PROTOCOL ◽  
2019 ◽  
Vol 9 (7) ◽  
Author(s):  
Ana Jiménez-García ◽  
Leandro Ruiz-Leyva ◽  
Ana Vázquez-Ágredos ◽  
Carmen Torres ◽  
Mauricio Papini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document