scholarly journals Two-parameter TSCSP method for solving complex symmetric system of linear equations

CALCOLO ◽  
2018 ◽  
Vol 55 (1) ◽  
Author(s):  
Davod Khojasteh Salkuyeh ◽  
Tahereh Salimi Siahkolaei
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
A. A. Dahalan ◽  
J. Sulaiman

Iterative methods particularly the Two-Parameter Alternating Group Explicit (TAGE) methods are used to solve system of linear equations generated from the discretization of two-point fuzzy boundary value problems (FBVPs). The formulation and implementation of the TAGE method are also presented. Then numerical experiments are carried out onto two example problems to verify the effectiveness of the method. The results show that TAGE method is superior compared to GS method in the aspect of number of iterations, execution time, and Hausdorff distance.


Author(s):  
David Ek ◽  
Anders Forsgren

AbstractThe focus in this paper is interior-point methods for bound-constrained nonlinear optimization, where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. We propose partial and full approximate solutions to the Newton systems. The specific approximate solution depends on estimates of the active and inactive constraints at the solution. These sets are at each iteration estimated by basic heuristics. The partial approximate solutions are computationally inexpensive, whereas a system of linear equations needs to be solved for the full approximate solution. The size of the system is determined by the estimate of the inactive constraints at the solution. In addition, we motivate and suggest two Newton-like approaches which are based on an intermediate step that consists of the partial approximate solutions. The theoretical setting is introduced and asymptotic error bounds are given. We also give numerical results to investigate the performance of the approximate solutions within and beyond the theoretical framework.


Sign in / Sign up

Export Citation Format

Share Document