Characterization of Satellite DNA Sequences from the Commercially Important Marine Rotifers Brachionus rotundiformis and Brachionus plicatilis

2000 ◽  
Vol 2 (1) ◽  
pp. 38-48 ◽  
Author(s):  
E.W.A. Boehm ◽  
O. Gibson ◽  
E. Lubzens
2021 ◽  
Vol 26 (1) ◽  
pp. 17-26
Author(s):  
Nenik Kholilah ◽  
Norma Afiati ◽  
Subagiyo Subagiyo

As per the FAO data, octopus identification is very limited in the species level at world fishery and also they are cryptic nature. On the other hand, Indonesia is one of the top ten highest octopus exporters. This study therefore aimed to determine the species of octopus based on phylogenetic analysis of mt-DNA COI. Octopuses were collected from nine different locations throughout Indonesia, i.e., Anambas, Bangka-Belitung, Cirebon, Karimunjawa, Tuban, Lombok, Buton, Wakatobi and Jayapura. Samples were mostly in the form of tentacles that were directly collected from fishermen. After being preserved in 96% ethanol, the sample was extracted in 10% chelexÒ, PCR amplification using Folmer’s primer then was further analysed by sequencing in Sanger methods. Of the 24 samples sequenced, the results recognized four species Octopodidae belongs to the three genera, named Amphioctopus aegina, Hapalochlaena fasciata, Octopus laqueus and Octopus cyanea. Mean pair-wise distances of within-species were ranged from 0 to 5.5 % and between-species was ranged from 12.9 to 15.8 %. This study distinctly confirmed the difference between genus Amphioctopus and Hapalochlaena (15.5 %), as also between O. laqueus and O. cyanea (12.9%) which was previously not completely distinguished. Although performing species identification using DNA sequences for shallow-water benthic octopus species is perhaps considered premature, this study indicated the possible application of COI sequences for species identification, thereby providing a preliminary dataset for future DNA barcoding of octopus, in particular for Indonesia waters.


Genetica ◽  
2006 ◽  
Vol 131 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Yasuhiro Saito ◽  
Rizalita R. Edpalina ◽  
Syuiti Abe

Genome ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 1074-1079 ◽  
Author(s):  
T. Schmidt ◽  
J. S. Heslop-Harrison

Satellite DNA from wild beet species was separated from restriction endonuclease digested genomic DNA by polyacrylamide gel electrophoresis. Two nonhomologous HaeIII satellite DNA repeats were cloned from the wild beet Beta trigyna. The type I repeat is 140–149 bp long and AT rich, while the type II is 162 bp in size and GC rich. A third repetitive HaeIII element cloned from the related wild beet B. corolliflora was shown to be organized as a HinfI satellite DNA family in the cultivated beet B. vulgaris ssp. vulgaris and the wild beet B. vulgaris ssp. maritima. This type III satellite monomer is 149 bp long and contains a high number of short direct subrepeats. The monomer was found in different genomic organizations and copy numbers in all sections of the genus Beta indicating an amplification early in the phylogeny. The HaeIII repeats from B. trigyna are characterized by a lower variability and form long tandem arrays in the genomes of Corollinae species. The investigation of the distribution of all three sequence families provided data that may contribute to the solution of taxonomic problems of the genus Beta and be useful in the characterization of hybrids and derived lines with alien wild beet chromosomes.Key words: satellite DNA, Beta vulgaris, Beta corolliflora, Beta trigyna, evolution, repetitive DNA.


2021 ◽  
Vol 22 (9) ◽  
pp. 4707
Author(s):  
Mariana Lopes ◽  
Sandra Louzada ◽  
Margarida Gama-Carvalho ◽  
Raquel Chaves

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


Sign in / Sign up

Export Citation Format

Share Document