Apricot Vegetative Growth, Tree Mortality, Productivity, Fruit Quality and Leaf Nutrient Composition as Affected by Myrobalan Rootstock and Blackthorn Inter-Stem

2014 ◽  
Vol 57 (2) ◽  
pp. 77-91 ◽  
Author(s):  
Tomo Milošević ◽  
Nebojša Milošević ◽  
Ivan Glišić
2018 ◽  
Vol 45 (No. 2) ◽  
pp. 76-82 ◽  
Author(s):  
Rodica Soare ◽  
Maria Dinu ◽  
Cristina Babeanu

This study was aimed at observing the effect of the grafting of tomato plants on morphological (vegetative growth), production and nutritive characteristics (quantity and quality of production). For this purpose, the ‘Lorely F1’ cultivar was used as a scion grafted onto the ‘Beaufort’ rootstock. Plants were cultivated with a stem and two stems. The observations collected in this study were concerned with the characteristics of plant growth. The studied morphological characteristics were plant height, stem diameter and number of leaves, and the studied production characteristics were the characteristics of fructification and productivity (the average number of fruit per plant, the average weight of the fruit, production per plant). Particular attention was paid to the nutritional characteristics of the fruit, to the fruit quality (total soluble solids, total sugar, acidity, vitamin C, antioxidant activity (by the Trolox method) and the contents of lycopene and beta-carotene). The results showed that grafting positively influenced the growth and production characteristics. Grafting of tomato plants had an appreciable effect on the vegetative growth of the variant 2-grafted tomatoes with a stem. The best option in terms of productivity and production was the variant 3-grafted tomatoes with two stems, which yielded 9.2 kg per plant. Fruit quality was not improved in any of the grafted variants. 


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Lexie McClymont ◽  
Ian Goodwin ◽  
Desmond Whitfield ◽  
Mark O’Connell ◽  
Susanna Turpin

Vegetative growth, orchard productivity, fruit quality and marketable yield were evaluated for rootstock (D6, BP1 and Quince A), tree density (741–4444 trees/ha), and training system (Open Tatura trellis, two-dimensional vertical and three-dimensional traditional) effects on young trees of the blush pear cultivar ‘ANP-0131’. ‘ANP-0131’ is a vigorous scion and vegetative growth, precocity, and yield were influenced by the selected rootstocks. Tree density and training system treatments exerted a substantial effect on canopy radiation interception while increasing tree density improved yield. Increasing tree density from 2222 (high density) to 4444 (ultra-high density) trees/ha did not improve cumulative yield. Crop load affected fruit size, such that “marketable” yield (yield of fruit weighing between 150 and 260 g) was greatest for trees on D6 rootstock and trained to Open Tatura trellis at high and ultra-high densities.


2021 ◽  
Vol 12 (3) ◽  
pp. 193-199
Author(s):  
R. F. Mohamed ◽  
A. A. R. Atawia ◽  
H. E. M. EL-Badawy ◽  
A. M. Abd- Al-Rahman ◽  
S. F. EL-Gioushy

2004 ◽  
Vol 129 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.


Sign in / Sign up

Export Citation Format

Share Document