scholarly journals European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests

Author(s):  
Hans Pretzsch ◽  
Torben Hilmers ◽  
Enno Uhl ◽  
Kamil Bielak ◽  
Michal Bosela ◽  
...  

Abstract Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age–growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations > 1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.

2021 ◽  
pp. 141-187
Author(s):  
H. Pretzsch ◽  
T. Hilmers ◽  
E. Uhl ◽  
M. del Río ◽  
A. Avdagić ◽  
...  

AbstractUnderstanding tree and stand growth dynamics in the frame of climate change calls for large-scale analyses. For analysing growth patterns in mountain forests across Europe, the CLIMO consortium compiled a network of observational plots across European mountain regions. Here, we describe the design and efficacy of this network of plots in monospecific European beech and mixed-species stands of Norway spruce, European beech, and silver fir.First, we sketch the state of the art of existing monitoring and observational approaches for assessing the growth of mountain forests. Second, we introduce the design, measurement protocols, as well as site and stand characteristics, and we stress the innovation of the newly compiled network. Third, we give an overview of the growth and yield data at stand and tree level, sketch the growth characteristics along elevation gradients, and introduce the methods of statistical evaluation. Fourth, we report additional measurements of soil, genetic resources, and climate smartness indicators and criteria, which were available for statistical evaluation and testing hypotheses. Fifth, we present the ESFONET (European Smart Forest Network) approach of data and knowledge dissemination. The discussion is focussed on the novelty and relevance of the database, its potential for monitoring, understanding and management of mountain forests toward climate smartness, and the requirements for future assessments and inventories.In this chapter, we describe the design and efficacy of this network of plots in monospecific European beech and mixed-species stands of Norway spruce, European beech, and silver fir. We present how to acquire and evaluate data from individual trees and the whole stand to quantify and understand the growth of mountain forests in Europe under climate change. It will provide concepts, models, and practical hints for analogous trans-geographic projects that may be based on the existing and newly recorded data on forests.


2021 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
S Versace ◽  
V Garfì ◽  
M Dalponte ◽  
D Febbraro Mirko ◽  
L Frizzera ◽  
...  

2020 ◽  
Vol 50 (7) ◽  
pp. 689-703 ◽  
Author(s):  
Hans Pretzsch ◽  
Torben Hilmers ◽  
Peter Biber ◽  
Admir Avdagić ◽  
Franz Binder ◽  
...  

In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 559 ◽  
Author(s):  
Fernando García-Robredo

The research on mixed-species forestry has rapidly increased in recent decades because there is a growing interest in these types of stands for environmental reasons. Their positive influence on ecosystem biodiversity, stability and resilience, as well as their role in the new challenge brought up by the adaptation to global change, have been the object of many research works. However, the economic implications of mixed-species forest management have not deserved the same attention. The objective of this work is to study the effect of species interactions on productivity, and to economically assess this effect. This research is focused on the analysis of financial return and risk in even aged mixed stands of Pinus sylvestris and Fagus sylvatica in Northern Spain. Growth and yield projections for monospecific and mixed stands of Scots pine and European beech were made by means of a previous model developed from a set of the Spanish National Forest Inventory plots in the region of Navarre. Data from yield tables for both species were used. The effect of species proportion on total stand yield was assessed and transgressive overyielding was found for some mixing ratios. A data series on average stumpage price for both species in Spain over a 29-year period was compiled and the joint probability distribution of price data was used to generate 500 price scenarios. Different management alternatives based on species proportion and rotation age were considered and evaluated in terms of profitability and risk. Some management recommendations can be derived from the results obtained, which point at an optimum mixing ratio from 30% to 40% Scots pine and 70% to 60% European beech.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 6 ◽  
Author(s):  
Diego Russo ◽  
Pasquale A. Marziliano ◽  
Giorgio Macrì ◽  
Giuseppe Zimbalatti ◽  
Roberto Tognetti ◽  
...  

Mixed-species forests may deliver more forest functions and services than monocultures, as being considered more resistant to disturbances than pure stands. However, information on wood quality in mixed-species vs. corresponding pure forests is poor. In this study, nine plots grouped into three triplets of pure and mixed-species stands of European beech and Calabrian pine (three dominated by European beech, three dominated by Calabrian pine, and three mixed-species plots) were analysed. We evaluated tree growth and wood quality through dendrochronological approaches and non-destructive technologies (acoustic detection), respectively, hypothesizing that the mixture might improve the fitness of each species and its wood quality. A linear mixed model was applied to test the effects of exogenous influences on the basal area index (BAI) and the dynamic modulus of elasticity (MOEd). The recruitment period (Rp) was studied to verify whether wood quality was independent from stem radial growth patterns. Results showed that the mixture effect influenced both wood quality and BAI. In the mixed-species plots, for each species, MOEd values were significantly higher than in the corresponding pure stands. The mixture effect aligned MOEd values, making wood quality uniform across the different diameter classes. In the mixed-species plots, a significant positive relationship between MOEd and Rp, but also significantly higher BAI values than in the pure plots, were found for European beech, but not for Calabrian pine. The results suggest the promotion of mixing of European beech and Calabrian pine in this harsh environment to potentially improve both tree growth and wood quality.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 733 ◽  
Author(s):  
Ruth-Kristina Magh ◽  
Fengli Yang ◽  
Stephanie Rehschuh ◽  
Martin Burger ◽  
Michael Dannenmann ◽  
...  

Research highlights: Interaction effects of coniferous on deciduous species have been investigated before the background of climate change. Background and objectives: The cultivation of European beech (Fagus sylvatica L.) in mixed stands has currently received attention, since the future performance of beech in mid-European forest monocultures in a changing climate is under debate. We investigated water relations and nitrogen (N) nutrition of beech in monocultures and mixed with silver-fir (Abies alba Mill.) in the Black Forest at different environmental conditions, and in the Croatian Velebit at the southern distribution limit of beech, over a seasonal course at sufficient water availability. Material and methods: Water relations were analyzed via δ13C signatures, as integrative measures of water supply assuming that photosynthesis processes were not impaired. N nutrition was characterized by N partitioning between soluble N fractions and structural N. Results: In the relatively wet year 2016, water relations of beech leaves, fir needles and roots differed by season, but generally not between beech monocultures and mixed cultivation. At all sites, previous and current year fir needles revealed significantly lower total N contents over the entire season than beech leaves. Fir fine roots exhibited higher or similar amounts of total N compared to needles. Correlation analysis revealed a strong relationship of leaf and root δ13C signatures with soil parameters at the mixed beech stands, but not at pure beech stands. While glutamine (Gln) uptake capacity of beech roots was strongly related to soil N in the monoculture beech stands, arginine (Arg) uptake capacities of beech roots were strongly related to soil N in mixed stands. Conclusions: Leaf N contents indicated a facilitative effect of silver-fir on beech on sites where soil total N concentrations where low, but an indication of competition effect where it was high. This improvement could be partially attributed to protein contents, but not to differences in uptake capacity of an individual N source. From these results it is concluded that despite similar performance of beech trees at the three field sites investigated, the association with silver-fir mediated interactive effects between species association, climate and soil parameters even at sufficient water supply.


2014 ◽  
Vol 56 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Rudolf Petráš ◽  
Michal Bošeľa ◽  
Julian Mecko ◽  
Julius Oszlányi ◽  
Ionel Popa

AbstractHeight-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst.), Silver fir (Abies alba L.), and European beech (Fagus sylvatica L.) from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m) was in the interval 1.94-1.97 and the bias (m) was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m) 2.67-2.72, and the bias (m) ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters were free


Ecosystems ◽  
2021 ◽  
Author(s):  
Thomas Asbeck ◽  
Daniel Kozák ◽  
Andreea P. Spînu ◽  
Martin Mikoláš ◽  
Veronika Zemlerová ◽  
...  

AbstractThe impact of forest management on biodiversity is difficult to scrutinize along gradients of management. A step towards analyzing the impact of forest management on biodiversity is comparisons between managed and primary forests. The standardized typology of tree-related microhabitats (TreMs) is a multi-taxon indicator used to quantify forest biodiversity. We aim to analyze the influence of environmental factors on the occurrence of groups of TreMs by comparing primary and managed forests. We collected data for the managed forests in the Black Forest (Germany) and for the primary forests in the Western (Slovakia) and Southern Carpathians (Romania). To model the richness and the different groups of TreMs per tree, we used generalized linear mixed models with diameter at breast height (DBH), altitude, slope and aspect as predictors for European beech (Fagus sylvatica (L.)), Norway spruce (Picea abies (L.)) and silver fir (Abies alba (Mill.)) in primary and managed temperate mountain forests. We found congruent results for overall richness and the vast majority of TreM groups. Trees in primary forests hosted a greater richness of all and specific types of TreMs than individuals in managed forests. The main drivers of TreMs are DBH and altitude, while slope and aspect play a minor role. We recommend forest and nature conservation managers to focus: 1) on the conservation of remaining primary forests and 2) approaches of biodiversity-oriented forest management on the selection of high-quality habitat trees that already provide a high number of TreMs in managed forests based on the comparison with primary forests.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 627 ◽  
Author(s):  
Iulia Almeida ◽  
Christine Rösch ◽  
Somidh Saha

Scientific studies have shown that mixed forests of silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.) provide higher ecosystem services than monospecific forests. Mixed forests are known for their high resilience to climate change impacts and superior biodiversity compared to monospecific forests. Despite this superiority, the transformation from monospecific to mixed forests can meet socio-technical challenges that are manifested in dissent or even in conflicts. The integration of stakeholders and citizens plays a key role in analyzing their perceptions and views of forest transformation. Their knowledge is required to co-design and implement socially acceptable options and pathways to increase the share of mixed forests. Based on a survey in Southwest Germany, we analyzed stakeholders’ and citizens’ perceptions of ecosystem services of monospecific and mixed forests of silver fir and beech. The findings show that people believe that mixed forests provide better cultural, regulating, and supporting ecosystem services than monospecific forests. However, provisioning services were perceived as being equally or even better provided by monospecific forests. The assumed abundance of old trees and the feelings of pleasantness especially influenced the superior perception of ecosystem services provided by mixed forests. The results indicate that there is public support for the transformation of monospecific silver fir and beech forests into mixed forests in Southwest Germany.


Sign in / Sign up

Export Citation Format

Share Document