Impact of public health interventions to curb SARS-CoV-2 spread assessed by an evidence-educated Delphi panel and tailored SEIR model
Abstract Aim To use a Delphi-panel-based assessment of the effectiveness of different non-pharmaceutical interventions (NPI) in order to retrospectively approximate and to prospectively predict the SARS-CoV-2 pandemic progression via a SEIR model (susceptible, exposed, infectious, removed). Methods We applied an evidence-educated Delphi-panel approach to elicit the impact of NPIs on the SARS-CoV-2 transmission rate R0 in Germany. Effectiveness was defined as the product of efficacy and compliance. A discrete, deterministic SEIR model with time step of 1 day, a latency period of 1.8 days, duration of infectiousness of 5 days, and a share of the total population of 15% assumed to be protected by immunity was developed in order to estimate the impact of selected NPI measures on the course of the pandemic. The model was populated with the Delphi-panel results and varied in sensitivity analyses. Results Efficacy and compliance estimates for the three most effective NPIs were as follows: test and isolate 49% (efficacy)/78% (compliance), keeping distance 42%/74%, personal protection masks (cloth masks or other face masks) 33%/79%. Applying all NPI effectiveness estimates to the SEIR model resulted in a valid replication of reported occurrence of the German SARS-CoV-2 pandemic. A combination of four NPIs at consented compliance rates might curb the CoViD-19 pandemic. Conclusion Employing an evidence-educated Delphi-panel approach can support SARS-CoV-2 modelling. Future curbing scenarios require a combination of NPIs. A Delphi-panel-based NPI assessment and modelling might support public health policy decision making by informing sequence and number of needed public health measures.