Experimental Investigation on the Co-Cure Processing of Honeycomb Structure with Self-Adhesive Prepreg

2008 ◽  
Vol 15 (1) ◽  
pp. 47-59 ◽  
Author(s):  
Chongxin Yuan ◽  
Min Li ◽  
Zuoguang Zhang ◽  
Yizhuo Gu
Author(s):  
Oliver Munz ◽  
Lisa Hühn ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer ◽  
Tim Fischer ◽  
...  

Abstract Sealing systems contribute significantly to the efficiency of turbomachinery. Small gap widths, which are important for low leakage mass flows in labyrinth seals, combined with thermal and mechanical expansion of the rotor can lead to contact with the stator. During these so-called rubbing processes, it is necessary to make an accurate prediction with respect to the performance and service life of the seal. For this purpose, the influence of relative velocity in the contact (up to 165ms−1) and incursion rate (up to 0.5 mms−1) on the resulting thermal and mechanical loads as well as wear mechanisms are studied for the rubbing process between an inclined labyrinth seal fin and a honeycomb segment. Furthermore, different axial configurations of the seal fin with respect to the honeycomb structure are considered. The system reacts very sensitively to a change of the seal fin position relative to the honeycomb structure. The incursion per revolution reflects a change of the wear mechanism from abrasive to plastic for a certain value. The results of this study contribute to the optimization of labyrinth seals and the development of new types of liner materials as well as geometries.


2006 ◽  
Author(s):  
Zhenbi Su ◽  
Zhaoyan Zhang ◽  
George Gogos ◽  
Reed Skaggs ◽  
Bryan Cheeseman ◽  
...  

A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the maximum pressure by several orders of magnitude. Two types of experiments were carried out to study the blast wave mitigation device. The first type of experiments was done with honeycomb structures protected by the blast wave mitigation device. Experimental results show that the device can adequately protect the honeycomb structure. A second type of experiments was done using a Hopkinson bar to measure the pressure transmitted through the blast wave mitigation device. The experimental results agree well with results from a theoretical model.


2013 ◽  
Vol 393 ◽  
pp. 460-466 ◽  
Author(s):  
Wan Luqman Hakim Wan Abdul Hamid ◽  
Yulfian Aminanda ◽  
Mohamed Shaik Dawood

The effect of low density filler material comprising polyurethane foam on the axial crushing resistance of Nomex honeycomb under quasi-static compression conditions was analyzed. Honeycombs with two different densities, two different heights and similar cell size, along with five different densities of polyurethane foams were used in the research. A total of 14 unfilled Nomex honeycombs, 15 polyurethane foams, and 39 foam-filled Nomex honeycombs were subjected to quasi-static compression loading. The crushing load and capability of foam-filled Nomex honeycomb structure in absorbing the energy were found to increase significantly since the cell walls of honeycomb were strengthened by the foam filler; the walls did not buckle at the very beginning of compression loading. The failure mechanism of the foam-filled honeycomb was analyzed and compared with the unfilled honeycomb.


2009 ◽  
Vol 16 (6) ◽  
pp. 543-553 ◽  
Author(s):  
Zhenbi Su ◽  
Wen Peng ◽  
Zhaoyan Zhang ◽  
George Gogos ◽  
Reed Skaggs ◽  
...  

A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the maximum pressure over an order of magnitude. Two types of experiments were carried out to study the blast wave mitigation device. The first type of experiments was done with honeycomb structures protected by the blast wave mitigation device. Experimental results show that the device can adequately protect the honeycomb structure. A second type of experiments was done using a Hopkinson bar to measure the pressure transmitted through the blast wave mitigation device. The experimental results agree well with results from a theoretical model.


Author(s):  
T. Shimizu ◽  
Y. Muranaka ◽  
I. Ohta ◽  
N. Honda

There have been many reports on ultrastructural alterations in muscles of hypokalemic periodic paralysis (hpp) and hypokalemic myopathy(hm). It is stressed in those reports that tubular structures such as tubular aggregates are usually to be found in hpp as a characteristic feature, but not in hm. We analyzed the histological differences between hpp and hm, comparing their clinical manifestations and morphologic changes in muscles. Materials analyzed were biopsied muscles from 18 patients which showed muscular symptoms due to hypokalemia. The muscle specimens were obtained by means of biopsy from quadriceps muscle and fixed with 2% glutaraldehyde (pH 7.4) and analyzed by ordinary method and modified Golgimethod. The ultrathin section were examined in JEOL 200CX transmission electron microscopy.Electron microscopic examinations disclosed dilated t-system and terminal cistern of sarcoplasmic reticulum (SR)(Fig 1), and an unique structure like “sixad” was occasionally observed in some specimens (Fig 2). Tubular aggregates (Fig 3) and honeycomb structure (Fig 4) were also common characteristic structures in all cases. These ultrastructural changes were common in both the hypokalemic periodic paralysis and the hypokalemic myopathy, regardless of the time of biopsy or the duration of hypokalemia suffered.


2021 ◽  
Vol 160 ◽  
pp. 107365
Author(s):  
Zhejian Li ◽  
Qiusong Yang ◽  
Rui Fang ◽  
Wensu Chen ◽  
Hong Hao
Keyword(s):  

2014 ◽  
Author(s):  
Shane Close ◽  
Victoria Adkins ◽  
Kandice Perry ◽  
Katheryn Eckles ◽  
Jill Brown ◽  
...  

2004 ◽  
Author(s):  
Mustapha Mouloua ◽  
Janan Smither ◽  
Robert C. Kennedy ◽  
Robert S. Kenned ◽  
Dan Compton ◽  
...  

2013 ◽  
Author(s):  
Sarah Edwards ◽  
Lindsey Brinker ◽  
Kathryn A. Bradshaw ◽  
Jennifer A. Munch ◽  
Rachel E. Brenner

Sign in / Sign up

Export Citation Format

Share Document