On Shrinking Gradient Ricci Solitons with Positive Ricci Curvature and Small Weyl Tensor

2019 ◽  
Vol 39 (5) ◽  
pp. 1235-1239
Author(s):  
Zhuhong Zhang ◽  
Chih-Wei Chen
2013 ◽  
Vol 21 (3) ◽  
pp. 95-102
Author(s):  
Xiang Gao ◽  
Qiaofang Xing ◽  
Rongrong Cao

Abstract In this paper, we deal with the complete non-compact expanding gradient Ricci soliton (Mn,g) with positive Ricci curvature. On the condition that the Ricci curvature is positive and the scalar curvature approaches 0 towards infinity, we derive a useful estimate on the growth of potential functions. Based on this and under the same assumptions, we prove that ∫t0 Rc (γ'(s) , γ' (s))ds and ∫t0 Rc (γ' (,s). v)ds at least have linear growth, where 7(5) is a minimal normal geodesic emanating from the point where R obtains its maximum. Furthermore, some other results on the Ricci curvature are also obtained.


2016 ◽  
Vol 20 (1) ◽  
pp. 389-436 ◽  
Author(s):  
Xiaodong Cao ◽  
Hung Tran

Author(s):  
Huai-Dong Cao ◽  
Ernani Ribeiro Jr ◽  
Detang Zhou

Abstract In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton ℝ 4 {\mathbb{R}^{4}} , or 𝕊 3 × ℝ {\mathbb{S}^{3}\times\mathbb{R}} , or 𝕊 2 × ℝ 2 . {\mathbb{S}^{2}\times\mathbb{R}^{2}.} In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.


2011 ◽  
Vol 13 (02) ◽  
pp. 269-282 ◽  
Author(s):  
XIAODONG CAO ◽  
BIAO WANG ◽  
ZHOU ZHANG

In this paper, we first apply an integral identity on Ricci solitons to prove that closed locally conformally flat gradient Ricci solitons are of constant sectional curvature. We then generalize this integral identity to complete noncompact gradient shrinking Ricci solitons, under the conditions that the Ricci curvature is bounded from below and the Riemannian curvature tensor has at most exponential growth. As a consequence, we classify complete locally conformally flat gradient shrinking Ricci solitons with Ricci curvature bounded from below.


Sign in / Sign up

Export Citation Format

Share Document