Semi-supervised learning for k-dependence Bayesian classifiers

Author(s):  
LiMin Wang ◽  
XinHao Zhang ◽  
Kuo Li ◽  
Shuai Zhang
2018 ◽  
Vol 2018 (15) ◽  
pp. 132-1-1323
Author(s):  
Shijie Zhang ◽  
Zhengtian Song ◽  
G. M. Dilshan P. Godaliyadda ◽  
Dong Hye Ye ◽  
Atanu Sengupta ◽  
...  

2014 ◽  
Vol 6 (2) ◽  
pp. 46-51
Author(s):  
Galang Amanda Dwi P. ◽  
Gregorius Edwadr ◽  
Agus Zainal Arifin

Nowadays, a large number of information can not be reached by the reader because of the misclassification of text-based documents. The misclassified data can also make the readers obtain the wrong information. The method which is proposed by this paper is aiming to classify the documents into the correct group.  Each document will have a membership value in several different classes. The method will be used to find the degree of similarity between the two documents is the semantic similarity. In fact, there is no document that doesn’t have a relationship with the other but their relationship might be close to 0. This method calculates the similarity between two documents by taking into account the level of similarity of words and their synonyms. After all inter-document similarity values obtained, a matrix will be created. The matrix is then used as a semi-supervised factor. The output of this method is the value of the membership of each document, which must be one of the greatest membership value for each document which indicates where the documents are grouped. Classification result computed by the method shows a good value which is 90 %. Index Terms - Fuzzy co-clustering, Heuristic, Semantica Similiarity, Semi-supervised learning.


Author(s):  
Anjuli Kannan ◽  
Kai Chen ◽  
Diana Jaunzeikare ◽  
Alvin Rajkomar

Sign in / Sign up

Export Citation Format

Share Document