Using spider web types as a substitute for assessing web-building spider biodiversity and the success of habitat restoration

2010 ◽  
Vol 19 (11) ◽  
pp. 3141-3155 ◽  
Author(s):  
John R. Gollan ◽  
Helen M. Smith ◽  
Matthew Bulbert ◽  
Andrew P. Donnelly ◽  
Lance Wilkie
2021 ◽  
Author(s):  
Abel Corver ◽  
Nicholas Wilkerson ◽  
Jeremiah Miller ◽  
Andrew Gordus

2017 ◽  
Vol 284 (1855) ◽  
pp. 20170363 ◽  
Author(s):  
Raya A. Bott ◽  
Werner Baumgartner ◽  
Peter Bräunig ◽  
Florian Menzel ◽  
Anna-Christin Joel

To survive, web-building spiders rely on their capture threads to restrain prey. Many species use special adhesives for this task, and again the majority of those species cover their threads with viscoelastic glue droplets. Cribellate spiders, by contrast, use a wool of nanofibres as adhesive. Previous studies hypothesized that prey is restrained by van der Waals' forces and entrapment in the nanofibres. A large discrepancy when comparing the adhesive force on artificial surfaces versus prey implied that the real mechanism was still elusive. We observed that insect prey's epicuticular waxes infiltrate the wool of nanofibres, probably induced by capillary forces. The fibre-reinforced composite thus formed led to an adhesion between prey and thread eight times stronger than that between thread and wax-free surfaces. Thus, cribellate spiders employ the originally protective coating of their insect prey as a fatal component of their adhesive and the insect promotes its own capture. We suggest an evolutionary arms race with prey changing the properties of their cuticular waxes to escape the cribellate capture threads that eventually favoured spider threads with viscous glue.


2020 ◽  
Vol 70 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Martín J Ramírez ◽  
Ivan L F Magalhaes ◽  
Shahan Derkarabetian ◽  
Joel Ledford ◽  
Charles E Griswold ◽  
...  

Abstract The common ancestor of spiders likely used silk to line burrows or make simple webs, with specialized spinning organs and aerial webs originating with the evolution of the megadiverse “true spiders” (Araneomorphae). The base of the araneomorph tree also concentrates the greatest number of changes in respiratory structures, a character system whose evolution is still poorly understood, and that might be related to the evolution of silk glands. Emphasizing a dense sampling of multiple araneomorph lineages where tracheal systems likely originated, we gathered genomic-scale data and reconstructed a phylogeny of true spiders. This robust phylogenomic framework was used to conduct maximum likelihood and Bayesian character evolution analyses for respiratory systems, silk glands, and aerial webs, based on a combination of original and published data. Our results indicate that in true spiders, posterior book lungs were transformed into morphologically similar tracheal systems six times independently, after the evolution of novel silk gland systems and the origin of aerial webs. From these comparative data, we put forth a novel hypothesis that early-diverging web-building spiders were faced with new energetic demands for spinning, which prompted the evolution of similar tracheal systems via convergence; we also propose tests of predictions derived from this hypothesis.[Book lungs; discrete character evolution; respiratory systems; silk; spider web evolution; ultraconserved elements.]


2016 ◽  
Author(s):  
Elizabeth J Roberson ◽  
Michael J Chips ◽  
Walter P Carson ◽  
Thomas P Rooney

Indirect effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in Pennsylvania and Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Wisconsin sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7-12 times greater in deer-free plots. Prey availability was also higher in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread throughout the region.


2021 ◽  
Vol 108 (3) ◽  
Author(s):  
Tom Mulder ◽  
Lucas Wilkins ◽  
Beth Mortimer ◽  
Fritz Vollrath

AbstractMany laboratory experiments demonstrate how orb-web spiders change the architecture of their webs in response to prey, surroundings and wind loading. The overall shape of the web and a range of other web parameters are determined by frame and anchor threads. In the wild, unlike the lab, the anchor threads are attached to branches and leaves that are not stationary but move, which affects the thread tension field. Here we experimentally test the effect of a moving support structure on the construction behaviour and web-parameters of the garden cross spider Araneus diadematus. We found no significant differences in building behaviour between rigid and moving anchors in total time spent and total distance covered nor in the percentage of the total time spent and distance covered to build the three major web components: radials, auxiliary and capture spirals. Moreover, measured key parameters of web-geometry were equally unaffected. These results call for re-evaluation of common understanding of spider webs as thread tensions are often considered to be a major factor guiding the spider during construction and web-operation.


2016 ◽  
Author(s):  
Elizabeth J Roberson ◽  
Michael J Chips ◽  
Walter P Carson ◽  
Thomas P Rooney

Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7-12 times greater in deer-free plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2538 ◽  
Author(s):  
Elizabeth J. Roberson ◽  
Michael J. Chips ◽  
Walter P. Carson ◽  
Thomas P. Rooney

Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.


2016 ◽  
Author(s):  
Elizabeth J Roberson ◽  
Michael J Chips ◽  
Walter P Carson ◽  
Thomas P Rooney

Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7-12 times greater in deer-free plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.


Science ◽  
1965 ◽  
Vol 149 (3689) ◽  
pp. 1190-1197 ◽  
Author(s):  
P. N. Witt ◽  
C. F. Reed
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document