scholarly journals Invasive ants reduce abundance of small rainforest skinks

Author(s):  
Lori Lach ◽  
Dylan Case ◽  
Peter Yeeles ◽  
Conrad J. Hoskin

AbstractInvasive ants are among the world’s most damaging invasive species, often directly or indirectly affecting native fauna. Insecticidal baits are the main method for suppressing or eradicating invasive ant populations, but their use must be considered against potential for unintended effects on native organisms. The invasive yellow crazy ant (Anoplolepis gracillipes) is widespread in the tropics, particularly on islands, where they have displaced a range of invertebrates. Effects of this ant on vertebrates, and in continental ecosystems generally, are less studied. We investigated the effects of yellow crazy ants and bait application on rainforest skinks and their invertebrate prey. We compared skink and skink prey abundance across four replicated rainforest site categories: high and low yellow crazy ant sites had both been baited but differed in yellow crazy ant activity; control sites had never had yellow crazy ants or been baited; and buffer sites had never had yellow crazy ants but had been baited. We recorded significantly lower abundance of two small skink species (Lygisaurus laevis and Saproscincus tetradactylus) in high yellow crazy ant sites compared to all other site categories. The differences persisted even after baiting reduced yellow crazy ant activity by 97.8% ± 0.04% (mean ± SD). A larger rainforest skink species (Carlia rubrigularis) was not negatively affected by yellow crazy ant invasion. Skink prey abundance was significantly lower in high yellow crazy ant sites compared to control sites and low yellow crazy ant sites, but not compared to buffer sites. These differences did not persist following baiting. We found no evidence that baiting negatively affects skinks or their invertebrate prey. Our data suggest that yellow crazy ants, but not the bait used to treat them, pose a direct threat to small rainforest skinks.

2017 ◽  
Vol 23 (3) ◽  
pp. 258 ◽  
Author(s):  
Monica A. M. Gruber ◽  
Meghan Cooling ◽  
Allan R. Burne

Invasive species are one of the most serious threats to biodiversity. Up-to-date and accurate information on the distribution of invasive species is an important biosecurity risk analysis tool. Several databases are available to determine the distributions of invasive and native species. However, keeping this information current is a real challenge. Ants are among the most widespread invasive species. Five species of ants are listed in the IUCN list of damaging invasive species, and many other species are also invasive in the Pacific. We sought to determine and update the distribution information for the 18 most problematic invasive ant species in the Pacific to assist Small Island Developing States with risk analysis. We compared the information on six public databases, conducted a literature review, and contacted experts on invasive ants in the Pacific region to resolve conflicting information. While most public records were accurate we found some new records had not yet been incorporated in the public databases, and some information was inaccurate. The maintenance of public databases faces an enormous challenge in balancing completeness (~15 000 ant species in this case) with accuracy (the impossibility of constantly surveying) and utility.


2015 ◽  
Vol 282 (1800) ◽  
pp. 20142846 ◽  
Author(s):  
Kirsten M. Prior ◽  
Jennifer M. Robinson ◽  
Shannon A. Meadley Dunphy ◽  
Megan E. Frederickson

Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant ( Myrmica rubra ) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive ( M. rubra ) or native ants ( Aphaenogaster rudis ) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change.


2009 ◽  
Vol 6 (1) ◽  
pp. 85-88 ◽  
Author(s):  
Naomi E. Davis ◽  
Dennis J. O'Dowd ◽  
Ralph Mac Nally ◽  
Peter T. Green

Biological invasions can alter direct and indirect interactions between species, generating far-reaching changes in ecological networks that affect key ecological functions. We used model and real fruit assays to show that the invasion and formation of high-density supercolonies by the yellow crazy ant (YCA), Anoplolepis gracilipes , disrupt frugivory by endemic birds on Christmas Island, Indian Ocean. The overall handling rates of model fruits by birds were 2.2–2.4-fold lower in ant-invaded than in uninvaded rainforest, and pecking rates by two bird species declined by 2.6- and 4.5-fold, respectively. YCAs directly interfered with frugivory; their experimental exclusion from fruiting displays increased fruit handling threefold to sixfold, compounding indirect effects of ant invasion on resources and habitat structure that influence bird abundances and behaviours. This invasive ant, whose high densities are sustained through mutualism with introduced scale insects, rapidly decreases fruit handling by endemic island birds and may erode a key ecological function, seed dispersal. Because most other invasive ant species form expansive, high-density supercolonies that depend in part on association with hemipteran mutualists, the effects that we report here on avian frugivore–plant associations may emerge across their introduced ranges.


2021 ◽  
Author(s):  
◽  
Alexandra Sébastien

<p>Invasive species can lead to major economic and ecological issues. For this reason, biological controls are being developed in order to help with invasive species population management. Pathogenic bacteria and viruses offer good biological control opportunities as both micro-organisms have played a role in natural population declines. However, beneficial bacteria and viruses associated with the targeted invasive species may interfere with biological controls, by protecting their hosts from infections. Previous knowledge on both pathogenic and beneficial bacteria and viruses present in invasive species may then support the development of an active and efficient biological control.  The Argentine ant, Linepithema humile, is a South American invasive ant species that has successfully spread over five continents. The ants were introduced to New Zealand after a complex invasion path, from Argentina their home range to Europe, then to Australia and finally to New Zealand. In their new environments, invasive Argentine ants affect species diversity and can cause agricultural losses. In the absence of any biological controls, the Argentine ant population is controlled by chemical sprays and poison baits. Management of these invasive ants in New Zealand is estimated to cost NZ$ 60 million a year. The Argentine ant population in New Zealand was reported to have unexpectedly declined. It was hypothesised that pathogens were the cause of this population collapse.  In this study, bacteria and viruses present in the invasive ants were investigated using 454 sequencing and Illumina sequencing for future developments of possible biological controls for the Argentine ants, and a better understanding of the observed population decline in New Zealand. Bacterial diversity present in Argentine ants either declined or diminished along the invasion pathway. At the same time, the invasive ants maintained a core of nine bacteria genera, including Lactobacillus and Gluconobacter, two bacterial genera with members known for their beneficial associations with honey bees. The presence of these core bacteria may have participated in the success of Argentine ants in their new environments. In the laboratory, the use of ampicillin and gentamicin antibiotics on the ants increased bacterial diversity present in the ants. Furthermore, ampicillin, kanamycin and spectinomycin antibiotic treatments increased ant survival but did not affect the ant fitness or intra-species aggressiveness. Only spectinomycin treated ants presented a higher level of inter-species aggressiveness. Bacterial diversity may play an important role in the ant health and at length population dynamics.  Finally, Argentine ants are the hosts of two viruses: the Deformed wing virus (DWV) involved in colony collapse disorder in honey bees, and Linepithema humile virus 1 (LHUV-1), a new virus related to DWV. Both viruses actively replicate within the ants, indicating a possible reservoir role of the ants. However, the effects of the viruses on the ants are not yet known. Further viral infection in the laboratory under different stress conditions and / or antibiotic treatment will give an insight in the role played by these viruses in the observed population collapse of Argentine ants in New Zealand. LHUV-1 may offer a possibility in the development of the first biological control for Argentine ants, depending on its specificity and its effects.  This dissertation provides a first insight in the core bacteria as well as potential harmful viruses present in Argentine ants. These bacteria and viruses may play a role in the ant population dynamics. Invasive species may co-introduce harmful pathogens with them, and participate to the spread of local ones. The pathogens may affect both invasive ants and native species population dynamics.</p>


2020 ◽  
Author(s):  
Eduardo A. Ventosa-Febles

Abstract Crotalaria verrucosa is a herbaceous annual native to Asia and parts of Oceania, now found widely naturalized throughout the tropics and subtropics, sometimes grown as a cover crop, intercrop and soil improver. It is a common weed of roadsides, marshes and agricultural land that can grow rapidly and develop ground cover. However, some studies have shown it does not adversely affect yield when grown with crops such as maize and cassava, while out-competing other weeds. It has not been classified as an invasive species in any country.


2014 ◽  
Vol 41 (2) ◽  
pp. 217-228 ◽  
Author(s):  
CLEO BERTELSMEIER ◽  
FRANCK COURCHAMP

SUMMARYAnts are among the worst invasive species, and can have tremendous negative impacts on native biodiversity, agriculture, estates, property and human health. Invasive ants are extremely difficult to control, and thus early detection is essential to prevent ant invasions, in particular through surveillance efforts at ports of entry. This paper assesses the potential distribution of 14 of the worst invasive ant species in France, under current and future climatic conditions. Consensus species distribution models, using five different modelling techniques, three global climate models and two CO2 emission scenarios, indicated that France presented suitable areas for 10/14 species, including five listed on the Invasive Species Specialist Group's selection of the world's 100 worst invasive species. Among these 10 species, eight were predicted to increase their potential range with climate change. Areas with the highest concentration of potential invaders were mainly located along the coastline, especially in the south-west of France, but all departments appeared to be climatically suitable for at least two invasive species. A ranking of climatic suitability per species for 17 major airports and 14 maritime ports indicated that the ports of entry with the highest suitability were located in Biarritz, Toulon and Nice, and the species with the greatest potential distribution in France were Lasius neglectus and Linepithema humile, followed by Solenopsis richteri, Pheidole megacephala and Wasmannia auropunctata.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tetsu Yasashimoto ◽  
Masayuki K. Sakata ◽  
Tomoya Sakita ◽  
Satoko Nakajima ◽  
Mamiko Ozaki ◽  
...  

AbstractAlien ant species (Formicidae, Hymenoptera) cause serious damage worldwide. Early detection of invasion and rapid management are significant for controlling these species. However, these attempts are sometimes hindered by the need for direct detection techniques, such as capture, visual observation, or morphological identification. In this study, we demonstrated that environmental DNA (eDNA) analysis can be used as a monitoring tool for alien ants using Linepithema humile (Argentine ant), one of the most invasive ants, as a model species. We designed a new real-time PCR assay specific to L. humile and successfully detected eDNA from the surface soil. The reliability of eDNA analysis was substantiated by comparing eDNA detection results with traditional survey results. Additionally, we examined the relationship between eDNA concentration and distance from nests and trails. Our results support the effectiveness of eDNA for alien ant monitoring and suggest that this new method could improve our ability to detect invasive ant species.


2020 ◽  
Author(s):  
Eduardo Ventosa-Febles

Abstract Kyllingia nemoralis is a perennial sedge native to the tropical Old World that has been introduced elsewhere in Oceania, the Indian Ocean and the Americas. Several species of Cyperaceae are listed as highly invasive worldwide. Sedges of the genus Kyllinga are recognized for their invasive tendencies in tropical climates. K. nemoralis exhibits characteristics common to the success of an invasive species, such as asexual spreading, positive reaction to human-caused disturbance, early and consistent reproduction and small seeds. In the tropics, it can be competitive with grass species and is sometimes aggressive in lawns, turf and pasture. A related species K. polyphylla, is a major weed of improved pastures, but can be suppressed by competition from vigorous, well managed grasses. K. nemoralis is listed as invasive in a number of islands in the Pacific and Indian Oceans.


2020 ◽  
Author(s):  
Jeanine Vélez-Gavilán

Abstract A. nervosa is a liana from the tropics and sub-tropics, reported as invasive in Reunion, Hawaii (USA), Cuba, Australia, New Caledonia and Tonga, but with little information about the invasiveness of the species or its effects on habitats and native species in these countries (Oviedo Prieto et al., 2012; PIER, 2016). In Cuba it is reported as a transformer and invasive species (Oviedo Prieto et al., 2012). In Queensland, Australia it is reported as thriving around Townsville and rampaging around Cooktown. It is also reported as an environmental weed in Australia (PIER, 2016), where it is an aggressive invader of rainforest and other tropical forest communities in northern Queensland (Weeds of Australia, 2016).


Sign in / Sign up

Export Citation Format

Share Document