Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network

BioMetals ◽  
2011 ◽  
Vol 24 (6) ◽  
pp. 1133-1151 ◽  
Author(s):  
Pieter Monsieurs ◽  
Hugo Moors ◽  
Rob Van Houdt ◽  
Paul J. Janssen ◽  
Ann Janssen ◽  
...  
Author(s):  
Pablo Alviz ◽  
Sebastian Fuentes ◽  
Luis Rojas ◽  
Raymond Turner ◽  
Michael Seeger ◽  
...  

Cadmium is a highly toxic heavy metal for biological systems. Cupriavidus metallidurans CH34 is a model strain for heavy metal resistance and bioremediation. The aim of this study was to determine the role of the c-di-GMP pathway in the C. metallidurans CH34 response to cadmium in both planktonic and biofilm cells. Increasing cadmium concentrations correlates with an inhibition of biofilm formation and EPS production in C. metallidurans cells. Planktonic and biofilm cells showed similar tolerance to cadmium. During exposure to cadmium an acute decrease of c-di-GMP levels in planktonic and biofilm cells was observed. Transcription analysis by RT-qPCR showed that cadmium induced in planktonic cells and strongly induced in biofilm cells the expression of the urf2 gene and the mercuric reductase encoding merA gene, which belong to the Tn501/Tn21 mer operon. After exposure to cadmium the cadA gene involved in cadmium resistance was equally upregulated in both lifestyles. Bioinformatic analysis and null mutant complementation assays indicated that the protein encoded by the urf2 gene is a functional phosphodiesterase involved in the c-di-GMP metabolism. We propose to rename the urf2 gene as mrp gene for metal regulated phosphodiesterase. An increase of the second messenger c-di-GMP content by the heterologous expression of the constitutively active diguanylate cyclase PleD* correlated with an increase in biofilm formation and cadmium susceptibility. These results indicate that the response to cadmium in C. metallidurans CH34 involves a decrease in c-di-GMP content that inhibits the biofilm lifestyle.


2007 ◽  
Vol 189 (20) ◽  
pp. 7417-7425 ◽  
Author(s):  
Sébastien Monchy ◽  
Mohammed A. Benotmane ◽  
Paul Janssen ◽  
Tatiana Vallaeys ◽  
Safiyh Taghavi ◽  
...  

ABSTRACT We fully annotated two large plasmids, pMOL28 (164 open reading frames [ORFs]; 171,459 bp) and pMOL30 (247 ORFs; 233,720 bp), in the genome of Cupriavidus metallidurans CH34. pMOL28 contains a backbone of maintenance and transfer genes resembling those found in plasmid pSym of C. taiwanensis and plasmid pHG1 of C. eutrophus, suggesting that they belong to a new class of plasmids. Genes involved in resistance to the heavy metals Co(II), Cr(VI), Hg(II), and Ni(II) are concentrated in a 34-kb region on pMOL28, and genes involved in resistance to Ag(I), Cd(II), Co(II), Cu(II), Hg(II), Pb(II), and Zn(II) occur in a 132-kb region on pMOL30. We identified three putative genomic islands containing metal resistance operons flanked by mobile genetic elements, one on pMOL28 and two on pMOL30. Transcriptomic analysis using quantitative PCR and microarrays revealed metal-mediated up-regulation of 83 genes on pMOL28 and 143 genes on pMOL30 that coded for all known heavy metal resistance proteins, some new heavy metal resistance proteins (czcJ, mmrQ, and pbrU), membrane proteins, truncated transposases, conjugative transfer proteins, and many unknown proteins. Five genes on each plasmid were down-regulated; for one of them, chrI localized on pMOL28, the down-regulation occurred in the presence of five cations. We observed multiple cross-responses (induction of specific metal resistance by other metals), suggesting that the cellular defense of C. metallidurans against heavy metal stress involves various regulons and probably has multiple stages, including a more general response and a more metal-specific response.


Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


2021 ◽  
Vol 9 (3) ◽  
pp. 499
Author(s):  
Majid Rasool Kamli ◽  
Nada A. Y. Alzahrani ◽  
Nahid H. Hajrah ◽  
Jamal S. M. Sabir ◽  
Adeel Malik

Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.


1995 ◽  
Vol 18 (3) ◽  
pp. 191-203 ◽  
Author(s):  
Eva M. Top ◽  
Helene Rore ◽  
Jean-Marc Collard ◽  
Veerle Gellens ◽  
Galina Slobodkina ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Manzar Alam ◽  
Mohd Imran ◽  
Syed Sayeed Ahmad

Background: Microbial resistance to antibiotics and heavy metals is a rising problem in the world today. All the Proteus vulgaris isolates showed their MIC in between 50-1600 µg/ml. Of 70% and 46% of the isolates showed their MIC at 800-1200 µg/ml against Zn2+ and Cu2+ while 80% of the isolates showed their MIC at 100-200 µg/ml against Ni2+, respectively. All Proteus vulgaris isolates also exhibited multiple resistance patterns (2-7 heavy metals) in different combination of metals. The Multi metal resistance Index (MHMR) ranges were found (0.04-0.5). Methods: A high level of antibiotics resistance was observed against Methicillin (100%) and least to Oflaxicin (6%), Gentamycine and Neomycin (10%). All Proteus vulgaris isolates also showed multiple drug resistance patterns (2-12 antibiotics) in different combination of antibiotics. The MAR index ranges were found (0.02-0.7). Of 98%, 84% and 80% of the total isolates showed urease, gelatinase and amylase activity. Results: The Proteus vulgaris isolates contained plasmid of size ranging from 42.5 to 57.0kb and molecular weight of plasmids ranged from 27.2 to 37.0 MD. Incidences of resistance transfer, 7 pairs of isolates were assessed for the transfer of the antibiotic/ heavy metal resistance markers. The higher (4.4x10-1 and 3.4x10-1) transfer frequency was observed among antibiotic and heavy metal while lower transfer frequency were (5.0x10-2 and 1.0x10-2) showed against antibiotic and heavy metal in both the medium from the entire site tested, respectively. Conclusion: Indicating the high threat of environmental pollution and appearance of heavy metal resistance which may support the enlargement of resistance to antibiotics among the pathogens.


2022 ◽  
Author(s):  
Madhuri Girdhar ◽  
Zeba Tabassum ◽  
Kopal Singh ◽  
Anand Mohan

Heavy metals accumulated the earth crust and causes extreme pollution. Accumulation of rich concentrations of heavy metals in environments can cause various human diseases which risks health and high ecological issues. Mercury, arsenic, lead, silver, cadmium, chromium, etc. are some heavy metals harmful to organisms at even very low concentration. Heavy metal pollution is increasing day by day due to industrialization, urbanization, mining, volcanic eruptions, weathering of rocks, etc. Different microbial strains have developed very efficient and unique mechanisms for tolerating heavy metals in polluted sites with eco-friendly techniques. Heavy metals are group of metals with density more than 5 g/cm3. Microorganisms are generally present in contaminated sites of heavy metals and they develop new strategies which are metabolism dependent or independent to tackle with the adverse effects of heavy metals. Bacteria, Algae, Fungi, Cyanobacteria uses in bioremediation technique and acts a biosorbent. Removal of heavy metal from contaminated sites using microbial strains is cheaper alternative. Mostly species involved in bioremediation include Enterobacter and Pseudomonas species and some of bacillus species too in bacteria. Aspergillus and Penicillin species used in heavy metal resistance in fungi. Various species of the brown algae and Cyanobacteria shows resistance in algae.


Nature ◽  
1977 ◽  
Vol 266 (5598) ◽  
pp. 165-167 ◽  
Author(s):  
HIDEOMI NAKAHARA ◽  
TOMOAKI ISHIKAWA ◽  
YASUNAGA SARAI ◽  
ISAMU KONDO ◽  
SUSUMU MITSUHASHI

Sign in / Sign up

Export Citation Format

Share Document