scholarly journals Thermal Submeso Motions in the Nocturnal Stable Boundary Layer. Part 2: Generating Mechanisms and Implications

Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractIn the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.

2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


2015 ◽  
Vol 54 (2) ◽  
pp. 352-369 ◽  
Author(s):  
Joshua D. Hoover ◽  
David R. Stauffer ◽  
Scott J. Richardson ◽  
Larry Mahrt ◽  
Brian J. Gaudet ◽  
...  

AbstractTo better understand the physical processes of the stable boundary layer and to quantify “submeso motions” in moderately complex terrain, exploratory case-study analyses were performed using observational field data supplemented by gridded North American Regional Reanalysis data and Pennsylvania State University real-time Weather Research and Forecasting Model output. Submeso motions are nominally defined as all motions between the largest turbulent scales and the smallest mesoscales. Seven nighttime cases from August and September of 2011 are chosen from a central Pennsylvania [“Rock Springs” (RS)] network of eight ground-based towers and two sound detection and ranging (sodar) systems . The observation network is located near Tussey Ridge, ~15 km southeast of the Allegheny Mountains. The seven cases are classified by the dominant synoptic-flow direction and proximity to terrain to assess the influence of synoptic conditions on the local submeso and mesogamma motions. It is found that synoptic winds with a large crossing angle over nearby Tussey Ridge can generate mesogamma wave motions and larger-magnitude submeso temperature and wind fluctuations in the RS network than do winds from the direction of the more distant Allegheny Mountains. Cases with synoptic winds that are nearly parallel to the topographic contours or are generally weak exhibit the smallest fluctuations. Changes in the magnitude of near-surface submeso temperature and wind fluctuations in response to local indicator variables are also analyzed. The observed submeso wind and temperature fluctuations are generally larger when the low-level wind speed and thermal stratification, respectively, are greater, but the synoptic flow and its relation to the terrain also play an important role.


Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractSubmesoscale motions within the stable boundary layer were detected during the Shallow Cold Pool Experiment conducted in the Colorado plains, Colorado, U.S.A. in 2012. The submesoscale motion consisted of two air layers creating a well-defined front with a sharp temperature gradient, and further-on referred to as a thermal submesofront (TSF). The semi-stationary TSFs and their advective velocities are detected and determined by the fibre-optic distributed-sensing (FODS) technique. An objective detection algorithm utilizing FODS measurements is able to detect the TSF boundary, which enables a detailed investigation of its spatio–temporal statistics. The novel approach in data processing is to conditionally average any parameter depending on the distance between a TSF boundary and the measurement location. By doing this, a spatially-distributed feature like TSFs can be characterized by point observations and processes at the TSF boundary can be investigated. At the TSF boundary, the air layers converge, creating an updraft, strong static stability, and vigorous mixing. Further, the TSF advective velocity of TSFs is an order of magnitude lower than the mean wind speed. Despite being gentle, the topography plays an important role in TSF formation. Details on generating mechanisms and implications of TSFs on the stable boundary layer are discussed in Part 2.


2018 ◽  
Vol 169 (3) ◽  
pp. 373-393 ◽  
Author(s):  
L. Mahrt ◽  
Christoph K. Thomas ◽  
Andrey A. Grachev ◽  
P. Ola G. Persson

2017 ◽  
Vol 74 (10) ◽  
pp. 3433-3449 ◽  
Author(s):  
Ivo G. S. van Hooijdonk ◽  
Herman J. H. Clercx ◽  
Carsten Abraham ◽  
Amber M. Holdsworth ◽  
Adam H. Monahan ◽  
...  

Abstract This study aims to find the typical growth rate of the temperature inversion during the onset of the stable boundary layer around sunset. The sunset transition is a very challenging period for numerical weather prediction, since neither accepted theories for the convective boundary layer nor those for the stable boundary layer appear to be applicable. To gain more insight in this period, a systematic investigation of the temperature inversion growth rate is conducted. A statistical procedure is used to analyze almost 16 years of observations from the Cabauw observational tower, supported by observations from two additional sites (Dome C and Karlsruhe). The results show that, on average, the growth rate of the temperature inversion (normalized by the maximum inversion during the night) weakly declines with increasing wind speed. The observed growth rate is quantitatively consistent among the sites, and it appears insensitive to various other parameters. The results were also insensitive to the afternoon decay rate of the net radiation except when this decay rate was very weak. These observations are compared to numerical solutions of three models with increasing complexity: a bulk model, an idealized single-column model (SCM), and an operational-level SCM. It appears only the latter could reproduce qualitative features of the observations using a first-order closure. Moreover, replacing this closure with a prognostic TKE scheme substantially improved the quantitative performance. This suggests that idealized models assuming instantaneous equilibrium flux-profile relations may not aid in understanding this period, since history effects may qualitatively affect the dynamics.


Author(s):  
Björn Maronga ◽  
Dan Li

AbstractWe revisit the longstanding problem of grid sensitivity, i.e., the lack of grid convergence in large-eddy simulations (LES) of the stable boundary layer. We use a comprehensive set of LES of the well-known Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study 1 (GABLS1) case with varying grid spacings between 12.5 m and 1 m to investigate several physical processes and numerical features that are possible causes of grid sensitivity. Our results demonstrate that there are two resolution regimes in which grid sensitivity manifests differently. We find that changing the numerical advection schemes and the subgrid-scale models alters the simulation results, but the options tested do not fully address the grid-sensitivity issue. Moreover, sensitivity runs suggest that the surface boundary condition and the interaction of the surface with the near-surface flow, as well as the mixing with the free atmosphere, are unlikely to be the causes of the observed grid sensitivity. One interesting finding is that the grid sensitivity in the fine grid-spacing regime (grid spacings $$\le 2\,\mathrm{m}$$ ≤ 2 m ) is closely related to the reduction in the energy content of large-scale turbulence, leading to less turbulence kinetic energy and hence lower boundary-layer heights. The present work demonstrates that there is still an urgent need to address this grid-sensitivity issue in order to perform reliable LES of the stable boundary layer.


2007 ◽  
Vol 64 (9) ◽  
pp. 3068-3090 ◽  
Author(s):  
Robert M. Banta ◽  
Larry Mahrt ◽  
Dean Vickers ◽  
Jielun Sun ◽  
Ben B. Balsley ◽  
...  

Abstract The light-wind, clear-sky, very stable boundary layer (vSBL) is characterized by large values of bulk Richardson number. The light winds produce weak shear, turbulence, and mixing, and resulting strong temperature gradients near the surface. Here five nights with weak-wind, very stable boundary layers during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) are investigated. Although the winds were light and variable near the surface, Doppler lidar profiles of wind speed often indicated persistent profile shapes and magnitudes for periods of an hour or more, sometimes exhibiting jetlike maxima. The near-surface structure of the boundary layer (BL) on the five nights all showed characteristics typical of the vSBL. These characteristics included a shallow traditional BL only 10–30 m deep with weak intermittent turbulence within the strong surface-based radiation inversion. Above this shallow BL sat a layer of very weak turbulence and negligible turbulent mixing. The focus of this paper is on the effects of this quiescent layer just above the shallow BL, and the impacts of this quiescent layer on turbulent transport and numerical modeling. High-frequency time series of temperature T on a 60-m tower showed that 1) the amplitudes of the T fluctuations were dramatically suppressed at levels above 30 m in contrast to the relatively larger intermittent T fluctuations in the shallow BL below, and 2) the temperature at 40- to 60-m height was nearly constant for several hours, indicating that the very cold air near the surface was not being mixed upward to those levels. The presence of this quiescent layer indicates that the atmosphere above the shallow BL was isolated and detached both from the surface and from the shallow BL. Although some of the nights studied had modestly stronger winds and traveling disturbances (density currents, gravity waves, shear instabilities), these disturbances seemed to pass through the region without having much effect on either the SBL structure or on the atmosphere–surface decoupling. The decoupling suggests that under very stable conditions, the surface-layer lower boundary condition for numerical weather prediction models should act to decouple and isolate the surface from the atmosphere, for example, as a free-slip, thermally insulated layer. A multiday time series of ozone from an air quality campaign in Tennessee, which exhibited nocturnal behavior typical of polluted air, showed the disappearance of ozone on weak low-level jets (LLJ) nights. This behavior is consistent with the two-stratum structure of the vSBL, and with the nearly complete isolation of the surface and the shallow BL from the rest of the atmosphere above, in contrast to cases with stronger LLJs, where such coupling was stronger.


2010 ◽  
Vol 138 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Florence Bocquet ◽  
Ben Balsley ◽  
Michael Tjernström ◽  
Gunilla Svensson

2020 ◽  
Author(s):  
Ivana Stiperski ◽  
Albert A.M. Holtslag ◽  
Manuela Lehner ◽  
C. David Whiteman

<p>Height of the stable boundary layer (SBL) presents an important diagnostic used to describe the relevant processes governing the evolution and characteristics of SBL, and the extent to which the surface is communicating with the free atmosphere.  Here we investigate the SBL height over a gentle (1°) mesoscale slope on which relatively deep mid-latitude katabatic flows (with jet maxima between 20 and 50 m) develop during clear nights. We show that detecting the SBL top depends on the method used (Richardson number, flux- and anisotropy-profiles). The detected SBL depth, mostly deviates from the jet maximum height or the top of the near-surface inversion. The flat terrain formulations for the SBL height correlate well with the detected top of the SBL if instead of background stratification, near-surface stratification is used in their formulations, however, they mostly largely overestimate the SBL height. The difference to flat-terrain SBL is also shown through the dependence of size of the dominant eddy with height. In katabatic flows the eddy size is semi-constant with height throughout the SBL, whereas in flat terrain eddy size varies significantly with height.</p>


Sign in / Sign up

Export Citation Format

Share Document