scholarly journals Mid-century emission pathways in Japan associated with the global 2 °C goal: national and global models’ assessments based on carbon budgets

2019 ◽  
Vol 162 (4) ◽  
pp. 1913-1927 ◽  
Author(s):  
Ken Oshiro ◽  
Keii Gi ◽  
Shinichiro Fujimori ◽  
Heleen L. van Soest ◽  
Christoph Bertram ◽  
...  

Abstract This study assesses Japan’s mid-century low-emission pathways using both national and global integrated assessment models in the common mitigation scenario framework, based on the carbon budgets corresponding to the global 2 °C goal. We examine high and low budgets, equal to global cumulative 1600 and 1000 Gt-CO2 (2011–2100) for global models, and 36 and 31 Gt-CO2 (2011–2050) in Japan for national models, based on the cost-effectiveness allocation performed by the global models. The impacts of near-term policy assumption, including the implementation and enhancement of the 2030 target of the nationally determined contribution (NDC), are also considered. Our estimates show that the low budget scenarios require a 75% reduction of CO2 emissions by 2050 below the 2010 level, which is nearly the same as Japan’s governmental 2050 goal of reducing greenhouse gas emissions by 80%. With regard to near-term actions, Japan’s 2030 target included in the NDC is on track to meet the high budget scenario, whereas it is falling short for the low budget scenario, which would require emission reductions immediately after 2020. Whereas models differ in the type of energy source on which they foresee Japan basing its decarbonization process (e.g., nuclear- or variable renewable energy-dependent), the large-scale deployment of low-carbon energy (nuclear, renewable, and carbon capture and storage) is shared across most models in both the high and low budget scenarios. By 2050, low-carbon energy represents 44–54% of primary energy and 86–97% of electricity supply in the high and low budget scenarios, respectively.

2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on carbon dioxide removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of life cycle assessment (LCA). Direct air carbon capture and storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Vol 61 (2) ◽  
pp. 466
Author(s):  
Prakash Sharma ◽  
Benjamin Gallagher ◽  
Jonathan Sultoon

Australia is in a bind. It is at the heart of the pivot to clean energy: it contains some of the world’s best solar irradiance and vast potential for large-scale carbon capture and storage; it showed the world the path forward with its stationary storage flexibility at the much vaunted Hornsdale power reserve facility; and it moved quickly to capitalise on low-carbon hydrogen production. Yet it remains one of the largest sources for carbon-intensive energy exports in the world. The extractive industries are still delivering thermal coal for power generation and metallurgical coal for carbon-intensive steel making in Asian markets. Even liquefied natural gas’s green credentials are being questioned. Are these two pathways compatible? The treasury and economy certainly benefit. But there is a huge opportunity to redress the source of those funds and jobs, while fulfilling the aspirations to reach net zero emissions by 2050. In our estimates, the low-carbon hydrogen economy could grow to become so substantial that 15% of all energy may be ultimately ‘carried’ by hydrogen by 2050. It is certainly needed to keep the world from breaching 2°C. Can Australia master the hydrogen trade? It is believed that it has a very good chance. Blessed with first-mover investment advantage, and tremendous solar and wind resourcing, Australia is already on a pathway to become a producer of green hydrogen below US$2/kg by 2030. How might it then construct a supply chain to compete in the international market with established trading partners and end users ready to renew old acquaintances? Its route is assessed to mastery of the hydrogen trade, analyse critical competitors for end use and compare costs with other exporters of hydrogen.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.


2013 ◽  
Vol 807-809 ◽  
pp. 783-789 ◽  
Author(s):  
Di Zhou ◽  
Cui Ping Liao ◽  
Peng Chun Li ◽  
Ying Huang

CCS (Carbon Capture and Storage) is the only technology available to achieve a deep cut in CO2emissions from large-scale fossil fuel usage. Although Guangdong Province has less heavy industries and higher reliance on energy import compared with many other provinces in China, CCS is still essential for the low-carbon development in the province. This is because fossil fuel energy is now and will be in the foreseeable future the major energy in Guangdong. CCS may have other benefits such as helping energy security and bring new business opportunities. The feasibility of CCS development in Guangdong is ensured by the existence of sufficient CO2storage capacity in offshore sedimentary basins in the northern South China Sea. A safe CO2storage is achievable as long as the selection of storage sites and the storage operations are in restrict quality control. The increased cost and energy penalty associated with CCS could be reduced through technical R&D, the utilization of captured CO2, and the utilization of infrastructure of offshore depleted oil fields. Fossil fuel energy plus CCS should be regarded as a new type of clean energy and deserves similar incentive policies that have been applied to other clean energies such as renewables and nuclear.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Brighid Moran Jay ◽  
David Howard ◽  
Nick Hughes ◽  
Jeanette Whitaker ◽  
Gabrial Anandarajah

Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public’s socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).


2021 ◽  
Vol 13 (21) ◽  
pp. 12278
Author(s):  
Katja Witte

To limit global warming, the use of carbon capture and storage technologies (CCS) is considered to be of major importance. In addition to the technical–economic, ecological and political aspects, the question of social acceptance is a decisive factor for the implementation of such low-carbon technologies. This study is the first literature review addressing the acceptance of industrial CCS (iCCS). In contrast to electricity generation, the technical options for large-scale reduction of CO2 emissions in the energy-intensive industry sector are not sufficient to achieve the targeted GHG neutrality in the industrial sector without the use of CCS. Therefore, it will be crucial to determine which factors influence the acceptance of iCCS and how these findings can be used for policy and industry decision-making processes. The results show that there has been limited research on the acceptance of iCCS. In addition, the study highlights some important differences between the acceptance of iCCS and CCS. Due to the technical diversity of future iCCS applications, future acceptance research must be able to better address the complexity of the research subject.


Sign in / Sign up

Export Citation Format

Share Document