Linear and non-linear proximal support vector machine classifiers for wind speed prediction

2018 ◽  
Vol 22 (S1) ◽  
pp. 379-390 ◽  
Author(s):  
V. Ranganayaki ◽  
S. N. Deepa
2019 ◽  
Vol 44 (3) ◽  
pp. 266-281 ◽  
Author(s):  
Zhongda Tian ◽  
Yi Ren ◽  
Gang Wang

Wind speed prediction is an important technology in the wind power field; however, because of their chaotic nature, predicting wind speed accurately is difficult. Aims at this challenge, a backtracking search optimization–based least squares support vector machine model is proposed for short-term wind speed prediction. In this article, the least squares support vector machine is chosen as the short-term wind speed prediction model and backtracking search optimization algorithm is used to optimize the important parameters which influence the least squares support vector machine regression model. Furthermore, the optimal parameters of the model are obtained, and the short-term wind speed prediction model of least squares support vector machine is established through parameter optimization. For time-varying systems similar to short-term wind speed time series, a model updating method based on prediction error accuracy combined with sliding window strategy is proposed. When the prediction model does not match the actual short-term wind model, least squares support vector machine trains and re-establishes. This model updating method avoids the mismatch problem between prediction model and actual wind speed data. The actual collected short-term wind speed time series is used as the research object. Multi-step prediction simulation of short-term wind speed is carried out. The simulation results show that backtracking search optimization algorithm–based least squares support vector machine model has higher prediction accuracy and reliability for the short-term wind speed. At the same time, the prediction performance indicators are also improved. The prediction result is that root mean square error is 0.1248, mean absolute error is 0.1374, mean absolute percentile error is 0.1589% and R2 is 0.9648. When the short-term wind speed varies from 0 to 4 m/s, the average value of absolute prediction error is 0.1113 m/s, and average value of absolute relative prediction error is 8.7111%. The proposed prediction model in this article has high engineering application value.


2014 ◽  
Vol 511-512 ◽  
pp. 927-930
Author(s):  
Shuai Zhang ◽  
Hai Rui Wang ◽  
Jin Huang ◽  
He Liu

In the paper, the forecast problems of wind speed are considered. In order to enhance the redaction accuracy of the wind speed, this article is about a research on particle swarm optimization least square support vector machine for short-term wind speed prediction (PSO-LS-SVM). Firstly, the prediction models are built by using least square support vector machine based on particle swarm optimization, this model is used to predict the wind speed next 48 hours. In order to further improve the prediction accuracy, on this basis, introduction of the offset optimization method. Finally large amount of experiments and measurement data comparison compensation verify the effectiveness and feasibility of the research on particle swarm optimization least square support vector machine for short-term wind speed prediction, Thereby reducing the short-term wind speed prediction error, very broad application prospects.


Author(s):  
Guan-fa Li ◽  
Wen-sheng Zhu

Due to the randomness of wind speed and direction, the output power of wind turbine also has randomness. After large-scale wind power integration, it will bring a lot of adverse effects on the power quality of the power system, and also bring difficulties to the formulation of power system dispatching plan. In order to improve the prediction accuracy, an optimized method of wind speed prediction with support vector machine and genetic algorithm is put forward. Compared with other optimization methods, the simulation results show that the optimized genetic algorithm not only has good convergence speed, but also can find more suitable parameters for data samples. When the data is updated according to time series, the optimization range of vaccine and parameters is adaptively adjusted and updated. Therefore, as a new optimization method, the optimization method has certain theoretical significance and practical application value, and can be applied to other time series prediction models.


2014 ◽  
Vol 599-601 ◽  
pp. 1972-1975
Author(s):  
Zheng Zhao ◽  
Long Xin Zhang ◽  
Hai Tao Liu ◽  
Zi Rui Liu

Accurate wind speed prediction is of significance to improve the ability to coordinate operation of a wind farm with a power system and ensure the safety of power grid operation. According to the randomness and volatility of wind speed, it is put forward that a WD_GA_LS_SVM short-term wind speed combination prediction model on basis of Wavelet decomposition (WD), Genetic alogorithms (GA) optimization and Least squares support vector machine (LS_SVM). Short-term wind speed prediction is carried out and compared with the neural network prediction model with use of the measured data of a wind farm. The results of error analysis indicate the combination prediction model selected is of higher prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document