Genetic diversity following demographic recovery in the insular endemic plant Galium catalinense subspecies acrispum

2010 ◽  
Vol 11 (5) ◽  
pp. 2015-2025 ◽  
Author(s):  
Lynn Riley ◽  
Mitchell E. McGlaughlin ◽  
Kaius Helenurm
2014 ◽  
Vol 38 ◽  
pp. 1169-1181 ◽  
Author(s):  
Ertuğrul FİLİZ ◽  
Etem OSMA ◽  
Ali KANDEMİR ◽  
Hüseyin TOMBULOĞLU ◽  
Güzin TOMBULOĞLU ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0211471 ◽  
Author(s):  
Sai Yang ◽  
Shuai Xue ◽  
Weiwei Kang ◽  
Zhuxi Qian ◽  
Zili Yi

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10521
Author(s):  
Núria Garcia-Jacas ◽  
Jèssica Requena ◽  
Sergi Massó ◽  
Roser Vilatersana ◽  
Cèsar Blanché ◽  
...  

Seseli farrenyi (Apiaceae) is an extremely narrow endemic plant, which is considered as one of the species of most conservation concern in Catalonia (NW Mediterranean Basin). Given the accelerated fragmentation and reduction of population size (of over 90%), the environmental agency of Catalonia is currently preparing a recovery plan that includes reinforcements of the extant populations. The present study is aimed at providing the necessary knowledge to carry out genetically-informed translocations, by using microsatellites as genetic markers. Fourteen microsatellites have been specifically developed for S. farrenyi, of which nine have been used. Besides the extant natural populations, the three ex situ collections that are known to exist of this species have also been studied, as they would be the donor sources for translocation activities. Our main finding is that levels of genetic diversity in the natural populations of S. farrenyi are still high (He = 0.605), most likely as a result of a predominantly outcrossing mating system in combination with the limited time elapsed since the population decline. However, population fragmentation is showing the first genetic signs, as the values of genetic differentiation are relatively high, and two well-differentiated genetic lineages have been found even in such a narrow geographic range. These genetic results provide important information when designing conservation management measures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irshad Ahmad Sofi ◽  
Irfan Rashid ◽  
Javaid Yousuf Lone ◽  
Sandhya Tyagi ◽  
Zafar A. Reshi ◽  
...  

AbstractHabitat loss due to climate change may cause the extinction of the clonal species with a limited distribution range. Thus, determining the genetic diversity required for adaptability by these species in sensitive ecosystems can help infer the chances of their survival and spread in changing climate. We studied the genetic diversity and population structure of Sambucus wightiana—a clonal endemic plant species of the Himalayan region for understanding its possible survival chances in anticipated climate change. Eight polymorphic microsatellite markers were used to study the allelic/genetic diversity and population structure. In addition, ITS1–ITS4 Sanger sequencing was used for phylogeny and SNP detection. A total number of 73 alleles were scored for 37 genotypes at 17 loci for 8 SSRs markers. The population structural analysis using the SSR marker data led to identifying two sub-populations in our collection of 37 S. wightiana genotypes, with 11 genotypes having mixed ancestry. The ITS sequence data show a specific allele in higher frequency in a particular sub-population, indicating variation in different S. wightiana accessions at the sequence level. The genotypic data of SSR markers and trait data of 11 traits of S. wightiana, when analyzed together, revealed five significant Marker-Trait Associations (MTAs) through Single Marker Analysis (SMA) or regression analysis. Most of the SSR markers were found to be associated with more than one trait, indicating the usefulness of these markers for working out marker-trait associations. Moderate to high genetic diversity observed in the present study may provide insurance against climate change to S. wightiana and help its further spread.


2019 ◽  
Vol 191 (2) ◽  
pp. 285-298 ◽  
Author(s):  
Pauline Rascle ◽  
Elodie Flaven ◽  
Frédéric Bioret ◽  
Sylvie Magnanon ◽  
Erwan Glemarec ◽  
...  

Abstract Eryngium viviparum (Apiaceae) is an endangered endemic plant of the Atlantic region of Europe, growing in seasonally flooded sites, and is characterized by a highly disjunct distribution. It occurs in just a few sites in the north-western part of the Iberian Peninsula and in a single locality in France. To improve the conservation status of E. viviparum in France, a conservation programme has been implemented to reintroduce the species. Before considering such an operation, genetic studies were conducted to determine the genetic status of the last French population and to identify the genetic source that should be considered for the best reintroduction strategy. Using microsatellite markers, we documented the genetic structure of the last French population and compared its genetic diversity with that of ten Iberian populations, which cover the three geographical regions where the species occurs. As expected, the French population of E. viviparum shows low genetic diversity due to a bottleneck and geographical isolation. The evolutionary potential appears low, with no private alleles in this population. Furthermore, this population is highly differentiated from the Iberian populations in terms of genetic variation and ecological niche. These results bring new questions regarding the conservation of E. viviparum in France, especially for management and reintroduction aimed at favouring genetic diversity and avoiding extinction.


Sign in / Sign up

Export Citation Format

Share Document