On the Stress Field of a Nonlinear Elastic Solid Torus with a Toroidal Inclusion

2017 ◽  
Vol 128 (1) ◽  
pp. 115-145 ◽  
Author(s):  
Ashkan Golgoon ◽  
Arash Yavari
1966 ◽  
Vol 33 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Joseph F. Shelley ◽  
Yi-Yuan Yu

Presented in this paper is a solution in series form for the stresses in an infinite elastic solid which contains two rigid spherical inclusions of the same size. The stress field at infinity is assumed to be either hydrostatic tension or uniaxial tension in the direction of the common axis of the inclusions. The solution is based upon the Papkovich-Boussinesq displacement-function approach and makes use of the spherical dipolar harmonics developed by Sternberg and Sadowsky. The problem is closely related to, but turns out to be much more involved than, the corresponding problem of two spherical cavities solved by these authors.


1972 ◽  
Vol 39 (3) ◽  
pp. 801-808 ◽  
Author(s):  
R. Benjumea ◽  
D. L. Sikarskie

The present paper is concerned with the application of integral equation techniques to problems in plane orthotropic elasticity. Two approaches for solving such problems are outlined, both of which are characterized by embedding the real body in a “fictitious” body for which the appropriate influence functions are known. Fictitious tractions are then introduced such that the boundary conditions on the real body are satisfied. This results in a coupled set of integral equations in the fictitious traction components. Once these are found the unknowns, i.e., stresses, etc., are found in a straightforward manner. The difficulty is in introducing the fictitious traction field such that the resulting integral equations are useful computationally, i.e., are Fredholm equations of the second rather than the first kind. A sufficient condition for this is that the fictitious traction field is applied to the boundary of the real body. The two approaches just mentioned differ in the choice of influence function used, in one case the influence function being singular in the field and the other singular on the boundary. A solution method already exists in the isotropic case using the boundary influence function [3]. An alternate formulation is presented using an internal influence function which is shown to have computational advantages in the anisotropic (orthotropic) case. To illustrate the methods, the stress field is found in a “truncated” orthotropic quarter space, under the condition of a given traction on the truncated surface, traction-free elsewhere. This problem is of interest in certain Rock Mechanics calculations, e.g., to a first approximation the stress field is that due to a rigid wedge penetrating a brittle, orthotropic elastic solid (prior to chip formation).


1996 ◽  
Vol 114 (1-4) ◽  
pp. 83-94 ◽  
Author(s):  
Z. M. Xiao ◽  
M. K. Lim ◽  
K. M. Liew
Keyword(s):  

2003 ◽  
Vol 70 (6) ◽  
pp. 825-831 ◽  
Author(s):  
H. Hasegawa ◽  
M. Kisaki

Exact solutions are presented in closed form for the axisymmetric stress and displacement fields caused by a circular solid cylindrical inclusion with uniform eigenstrain in a transversely isotropic elastic solid. This is an extension of a previous paper for an isotropic elastic solid to a transversely isotropic solid. The strain energy is also shown. The method of Green’s functions is used. The numerical results for stress distributions are compared with those for an isotropic elastic solid.


Author(s):  
D Bigoni ◽  
F Dal Corso

A weak line inclusion model in a nonlinear elastic solid is proposed to analytically quantify and investigate, for the first time, the stress state and growth conditions of a finite-length shear band in a ductile prestressed metallic material. The deformation is shown to become highly focused and aligned coaxial to the shear band—a finding that provides justification for the experimentally observed strong tendency towards rectilinear propagation—and the energy release rate to blow up to infinity, for incremental loading occurring when the prestress approaches the elliptic boundary. It is concluded that the propagation becomes ‘unrestrainable’, a result substantiating the experimental observation that shear bands are the preferential near-failure deformation modes.


It is supposed that a region within an isotropic elastic solid undergoes a spontaneous change of form which, if the surrounding material were absent, would be some prescribed homogeneous deformation. Because of the presence of the surrounding material stresses will be present both inside and outside the region. The resulting elastic field may be found very simply with the help of a sequence of imaginary cutting, straining and welding operations. In particular, if the region is an ellipsoid the strain inside it is uniform and may be expressed in terms of tabu­lated elliptic integrals. In this case a further problem may be solved. An ellipsoidal region in an infinite medium has elastic constants different from those of the rest of the material; how does the presence of this inhomogeneity disturb an applied stress-field uniform at large distances? It is shown that to answer several questions of physical or engineering interest it is necessary to know only the relatively simple elastic field inside the ellipsoid.


1995 ◽  
Author(s):  
Galina V. Dreiden ◽  
A. V. Porubov ◽  
A. F. Samsonov ◽  
Irina V. Semenova ◽  
E. V. Sokurinskaya

Sign in / Sign up

Export Citation Format

Share Document