Detection and inheritance of leaf rust resistance in common wheat lines Agra Local and IWP94

Euphytica ◽  
2007 ◽  
Vol 159 (3) ◽  
pp. 343-351 ◽  
Author(s):  
D. Datta ◽  
S. K. Nayar ◽  
S. C. Bhardwaj ◽  
M. Prashar ◽  
Subodh Kumar
Author(s):  
E. R. Davoyan ◽  
R. O. Davoyan ◽  
Y. S. Zubanova ◽  
D. S. Mikov ◽  
D. M. Boldakov

The results of evaluating introgressive lines by resistance to leaf rust and the presence of molecular markers in them linked to the known resistance genes Lr28, Lr35, Lr51, Lr10, Lr26, Lr34 are presented.


2021 ◽  
Vol 16 (1) ◽  
pp. 172-183
Author(s):  
Agnieszka Tomkowiak ◽  
Roksana Skowrońska ◽  
Michał Kwiatek ◽  
Julia Spychała ◽  
Dorota Weigt ◽  
...  

Abstract Leaf rust caused by the fungus Puccinia recondita f. sp. tritici is one of the most dangerous diseases of common wheat. Infections caused by fungal pathogens reduce the quantity and quality of yields of many cereal species. The most effective method to limit plant infection is to use cultivars that show rust resistance. Genetically conditioned horizontal-type resistance (racial-nonspecific) is a desirable trait because it is characterized by more stable expression compared to major (R) genes that induce racially specific resistance, often overcome by pathogens. Horizontal resistance is conditioned by the presence of slow rust genes, which include genes Lr34 and Lr46. This study aimed to identify markers linked to both genes in 64 common wheat lines and to develop multiplex PCR reaction conditions that were applied to identify both genes simultaneously. The degree of infestation of the analyzed lines was also assessed in field conditions during the growing season of 2017 and 2018. Simple sequence repeat anchored-polymerase chain reaction (SSR-PCR) marker csLV was identified during analysis in line PHR 4947. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. In addition to gene Lr34, gene Lr46 was identified in this genotype. Lines PHR 4947 and PHR 4819 were characterized by the highest leaf rust resistance in field conditions. During STS-PCR analyses, the marker wmc44 of gene Lr46 was identified in most of the analyzed lines. This marker was not present in the following genotypes: PHR 4670, PHR 4800, PHR 4859, PHR 4907, PHR 4922, PHR 4949, PHR 4957, PHR 4995, and PHR 4997. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. Genotypes carrying the markers of the analyzed gene showed good resistance to leaf rust in field conditions in both 2017 and 2018. Research has demonstrated that marker assisted selection (MAS) and multiplex PCR techniques are excellent tools for selecting genotypes resistant to leaf rust.


Genome ◽  
1987 ◽  
Vol 29 (3) ◽  
pp. 467-469 ◽  
Author(s):  
P. L. Dyck

Backcross lines of gene LrT2 for resistance to leaf rust in the common wheat (Triticum aestivum L.) 'Thatcher' unexpectedly show improved resistance to stem rust compared with that of the recurrent parent. Genetic–cytogenetic evidence indicates that LrT2 is on chromosome 7D, which is known to carry the "suppressor" gene(s) that prevent the expression of stem rust resistance conferred by other genes in 'Canthatch'. Thus, LrT2 may be a nonsuppressing allele of the suppressor gene(s) or be closely linked to such an allele. LrT2 has been designated Lr34. Key words: Triticum, wheat, rust resistance.


1961 ◽  
Vol 41 (2) ◽  
pp. 342-359 ◽  
Author(s):  
R. G. Anderson

The inheritance of seedling resistance to races 1a, 5a, 11, 15a and 126a of leaf rust was studied in the varieties Exchange and Selkirk and to races 1a and 15a in the varieties Lee, Gabo, Timstein, Mayo 52 and Mayo 54. Thatcher was used as the susceptible variety. Rust tests were carried out on F1 and F2 populations of diallel crosses among these varieties and on F2 families from the backcrosses to Thatcher. Two genes were found. One gene LrE conditions a (2) type reaction to all five races in Exchange and Selkirk. The other gene LrL conditions a (; 1 =) type reaction to races 1a and 15a in all seven varieties. Isogenic lines possessing these genes are being developed in the varieties Prelude and Thatcher. The importance of such lines in future genetic studies and their application in other biological studies are discussed.The increase in amount of leaf rust found on Lee and Selkirk in Canada during the period 1951–1958 is accounted for by the increase of races which render the gene LrL ineffective in these two varieties.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 469-473 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
V. Garcia ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) and only a few designated resistance genes are known to occur in this crop. A dominant leaf rust resistance gene in the Chilean durum cv. Llareta INIA was mapped to chromosome arm 7BL through bulked segregant analysis using the amplified fragment length polymorphism (AFLP) technique, and by mapping three polymorphic markers in the common wheat (T. aestivum) International Triticeae Mapping Initiative population. Several simple sequence repeat (SSR) markers, including Xgwm344-7B and Xgwm146-7B, were associated with the leaf rust resistance gene. Resistance response and chromosomal position indicated that this gene is likely to be Lr14a. The SSR markers Xgwm344-7B and Xgwm146-7B and one AFLP marker also differentiated common wheat cv. Thatcher from the near-isogenic line with Lr14a, as well as durum ‘Altar C84’ from durum wheat with Lr14a. This is the first report of the presence of Lr14a in durum wheat, although the gene originally was transferred from emmer wheat ‘Yaroslav’ to common wheat. Lr14a is also present in CIMMYT-derived durum ‘Somateria’ and effective against Mexican and other P. triticina races of durum origin. Lr14a should be deployed in combination with other effective leaf rust resistance genes to prolong its effectiveness in durum wheat.


Sign in / Sign up

Export Citation Format

Share Document