Research on Asymmetric Failure Mechanism and Control Technology of Roadway Along Gob in Extra Thick Coal Seam

Author(s):  
Yongqiang Zhao ◽  
Xiaobin Li ◽  
Jiaqi Hou
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zengde Yin ◽  
Jinxiao Liu ◽  
Wenbin Sun ◽  
Kebao Guo ◽  
Feng Zhang

Weak impact occurs during roadway excavation in some extremely thick coal seams in China. Although this hazard is not enough to destroy the roadway, it will cause fracturing and large deformation of the roadway surrounding rock, resulting in the fracturing of bolts and anchor cables and bringing great difficulties to roadway support. In the hope of solving this problem, firstly, the reason for impact occurrence in the roadway of the extremely thick coal seam is analyzed from the perspective of energy. Then, the surrounding rock fracture evolution in such a roadway is explored by means of numerical simulation, microseism, and borehole observation. Furthermore, the “pressure relief and yielding support” joint prevention and control technology is proposed and applied to Yili No. 1 Coal Mine. The field engineering application results show that the joint prevention and control technology can effectively reduce the impact energy and ensure the stability of the roadway surrounding rock in the extremely thick coal seam. The research findings can provide a theoretical foundation for the roadway support of the same type.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Shengrong Xie ◽  
Xiaoyu Wu ◽  
Dongdong Chen ◽  
Yaohui Sun ◽  
En Wang ◽  
...  

The surrounding rock of the roadway under double gobs in the lower coal seams is partially damaged by the mining of the upper coal seam and the stress superimposition of the stepped coal pillars. What is worse, the upper layer of the roof is collapse gangue in double gobs, which makes the anchor cable unable to anchor the reliable bearing layer, so the anchoring performance is weakened. The actual drawing forces of the anchor bolt and anchor cable are only approximately 50 kN and 80 kN, respectively. The roadway develops cracks and large deformations with increasing difficulty in achieving safe ventilation. In view of the above problems, taking the close coal seam mining in the Zhengwen Coal Mine as the engineering background, a theoretical calculation is used to obtain the loading of the step coal pillars and the slip line field distribution of the floor depth. The numerical simulation monitors the stress superimposition of stepped coal pillars and the distribution of elastoplastic areas to effectively evaluate the layout of mining roadways. The numerical simulation also analyzes the effective prestress field distribution of the broken roof and grouting roof anchor cable. A laboratory test was used to monitor the strength of the grouting test block of the broken coal body. Then, we proposed that grouting anchor cable be used to strengthen the weak surface of the roof and block the roof cracks. From on-site measurement, the roadway was seen to be arranged in the lateral stress stabilization area of the stepped coal pillars, the combined support technology of the grouting anchor cable (bolt) + U type steel + a single prop was adopted, the roadway deformation was small, the gas influx was reduced, and the drawing force of the anchor bolt and the anchor cable was increased to approximately 160 kN and 350 kN, respectively. The overall design and control technology of the roadway can meet the site safety and efficient production requirements.


2012 ◽  
Vol 616-618 ◽  
pp. 565-568
Author(s):  
Bin Yu ◽  
Jun Zhao ◽  
Hong Chun Xia

This thesis briefly introduced roof control technology in fully-mechanized sublevel caving mining with hard roof and hard coal seam, Mining technology , gas prevention and comprehensive prevention and control technology in spontaneous combustion of coal, which in longwall top-coal caving face with hydraulic support in thickness seam in the Datong permo carboniferous coal seam . New development directions of fully-mechanized sublevel caving mining technology in the Datong mining area in the next few years.


2017 ◽  
Vol 27 (2) ◽  
pp. 245-252 ◽  
Author(s):  
Renshu Yang ◽  
Yongliang Li ◽  
Dongming Guo ◽  
Lan Yao ◽  
Tongmao Yang ◽  
...  

2018 ◽  
Vol 53 ◽  
pp. 04024
Author(s):  
Jianghua Li ◽  
Yuguang Lian ◽  
Hongjie Li

Some coal seams belong to cretaceous strata in the east of Inner Mongolia, China. There are obvious differences of rock characteristics and mechanical properties between Cretaceous and Carboniferous- Permian strata. The overburden failure characteristics of extra-thick coal seam with slicing full-mechanized caving mining are studied through rock mechanics experiment, field observation and theoretical analysis and so on. Water disaster prevention and control method of roof and goaf is put forward under the condition of extra-thick coal seam with slicing full-mechanized caving mining. The final research results include: (1) The rock of cretaceous strata has low strength and soft characteristic, its stability is very poor, cretaceous rock belongs to weak type; (2) Under the condition of extra-thick coal seam with slicing full-mechanized caving mining, the ratio between caving zone and mining height of field observation result is 4.58~4.74, the observation results of two boreholes are close; (3) It is significantly effective to prevent and control water disaster from goaf through roof hole drainage method, coal and rock safety pillar remain method is used to limit mining height under the Tertiary gravel aquifer, which makes the working face exploit safely.


Sign in / Sign up

Export Citation Format

Share Document