scholarly journals Support Vector machine and duration-aware conditional random field for identification of spatio-temporal activity patterns by combined indoor positioning and heart rate sensors

2016 ◽  
Vol 20 (4) ◽  
pp. 693-714 ◽  
Author(s):  
Jan Behmann ◽  
Kathrin Hendriksen ◽  
Ute Müller ◽  
Wolfgang Büscher ◽  
Lutz Plümer
Author(s):  
X. Wang ◽  
L. Xu

One of the most important applications of remote sensing classification is water extraction. The water index (WI) based on Landsat images is one of the most common ways to distinguish water bodies from other land surface features. But conventional WI methods take into account spectral information only form a limited number of bands, and therefore the accuracy of those WI methods may be constrained in some areas which are covered with snow/ice, clouds, etc. An accurate and robust water extraction method is the key to the study at present. The support vector machine (SVM) using all bands spectral information can reduce for these classification error to some extent. Nevertheless, SVM which barely considers spatial information is relatively sensitive to noise in local regions. Conditional random field (CRF) which considers both spatial information and spectral information has proven to be able to compensate for these limitations. Hence, in this paper, we develop a systematic water extraction method by taking advantage of the complementarity between the SVM and a water index-guided stochastic fully-connected conditional random field (SVM-WIGSFCRF) to address the above issues. In addition, we comprehensively evaluate the reliability and accuracy of the proposed method using Landsat-8 operational land imager (OLI) images of one test site. We assess the method’s performance by calculating the following accuracy metrics: Omission Errors (OE) and Commission Errors (CE); Kappa coefficient (KP) and Total Error (TE). Experimental results show that the new method can improve target detection accuracy under complex and changeable environments.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5483
Author(s):  
Marisol Martinez-Alanis ◽  
Erik Bojorges-Valdez ◽  
Niels Wessel ◽  
Claudia Lerma

Most methods for sudden cardiac death (SCD) prediction require long-term (24 h) electrocardiogram recordings to measure heart rate variability (HRV) indices or premature ventricular complex indices (with the heartprint method). This work aimed to identify the best combinations of HRV and heartprint indices for predicting SCD based on short-term recordings (1000 heartbeats) through a support vector machine (SVM). Eleven HRV indices and five heartprint indices were measured in 135 pairs of recordings (one before an SCD episode and another without SCD as control). SVMs (defined with a radial basis function kernel with hyperparameter optimization) were trained with this dataset to identify the 13 best combinations of indices systematically. Through 10-fold cross-validation, the best area under the curve (AUC) value as a function of γ (gamma) and cost was identified. The predictive value of the identified combinations had AUCs between 0.80 and 0.86 and accuracies between 80 and 86%. Further SVM performance tests on a different dataset of 68 recordings (33 before SCD and 35 as control) showed AUC = 0.68 and accuracy = 67% for the best combination. The developed SVM may be useful for preventing imminent SCD through early warning based on electrocardiogram (ECG) or heart rate monitoring.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yibo Li ◽  
Yuxiang Zhang ◽  
Huiyu Zhu ◽  
Rongxin Yan ◽  
Yuanyuan Liu ◽  
...  

Acoustic emission (AE) technique is often used to detect inaccessible area of large storage tank floor with AE sensors placed outside the tank. For tanks with fixed roofs, the drop-back signals caused by condensation mix with corrosion signals from the tank floor and interfere with the online AE inspection. The drop-back signals are very difficult to filter out using conventional methods. To solve this problem, a novel AE inner detector, which works inside the storage tank, is adopted and a pattern recognition algorithm based on CRF (Conditional Random Field) model is presented. The algorithm is applied to differentiate the corrosion signals from interference signals, especially drop-back signals caused by condensation. Q235 steel corrosion signals and drop-signals were collected both in laboratory and in field site, and seven typical AE features based on hits and frequency are extracted and selected by mRMR (Minimum Redundancy Maximum Relevance) for pattern recognition. To validate the effectiveness of the proposed algorithm, the recognition result of CRF model was compared with BP (Back Propagation), SVM (Support Vector Machine), and HMM (Hidden Markov Model). The results show that training speed, accuracy, and ROC (Receiver Operating Characteristic) results of the CRF model outperform other methods.


Sign in / Sign up

Export Citation Format

Share Document