Smad interacting protein 1 influences transforming growth factor-β1/Smad signaling in extracellular matrix protein production and hypertrophic scar formation

2019 ◽  
Vol 50 (6) ◽  
pp. 503-514 ◽  
Author(s):  
Xiaobing Fang ◽  
Xiaolong Hu ◽  
Zhao Zheng ◽  
Ke Tao ◽  
Hongtao Wang ◽  
...  
2001 ◽  
Vol 281 (5) ◽  
pp. C1457-C1467 ◽  
Author(s):  
Gaétan Thibault ◽  
Marie-Josée Lacombe ◽  
Lynn M. Schnapp ◽  
Alexandre Lacasse ◽  
Fatiha Bouzeghrane ◽  
...  

Using a novel pharmacological tool with125I-echistatin to detect integrins on the cell, we have observed that cardiac fibroblasts harbor five different RGD-binding integrins: α8β1, α3β1, α5β1, αvβ1, and αvβ3. Stimulation of cardiac fibroblasts by angiotensin II (ANG II) or transforming growth factor-β1 (TGF-β1) resulted in an increase of protein and heightening by 50% of the receptor density of α8β1-integrin. The effect of ANG II was blocked by an AT1, but not an AT2, receptor antagonist, or by an anti-TGF-β1 antibody. ANG II and TGF-β1 increased fibronectin secretion, smooth muscle α-actin synthesis, and formation of actin stress fibers and enhanced attachment of fibroblasts to a fibronectin matrix. The α8- and β1-subunits were colocalized by immunocytochemistry with vinculin or β3-integrin at focal adhesion sites. These results indicate that α8β1-integrin is an abundant integrin on rat cardiac fibroblasts. Its positive modulation by ANG II and TGF-β1 in a myofibroblast-like phenotype suggests the involvement of α8β1-integrin in extracellular matrix protein deposition and cardiac fibroblast adhesion.


2020 ◽  
Vol 295 (9) ◽  
pp. 2687-2697 ◽  
Author(s):  
Thomas J. Broekelmann ◽  
Nicholas K. Bodmer ◽  
Robert P. Mecham

Microfibril-associated glycoprotein-1 (MAGP-1) is a component of vertebrate extracellular matrix (ECM) microfibrils that, together with the fibrillins, contributes to microfibril function. Many of the phenotypes associated with MAGP-1 gene inactivation are consistent with dysregulation of the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling system. We have previously shown that full-length MAGP-1 binds active TGFβ-1 and some BMPs. The work presented here further defines the growth factor–binding domain of MAGP-1. Using recombinant domains and synthetic peptides, along with surface plasmon resonance analysis to measure the kinetics of the MAGP-1–TGFβ-1 interaction, we localized the TGFβ- and BMP-binding site in MAGP-1 to a 19-amino acid–long, highly acidic sequence near the N terminus. This domain was specific for binding active, but not latent, TGFβ-1. Growth factor activity experiments revealed that TGFβ-1 retains signaling activity when complexed with MAGP-1. Furthermore, when bound to fibrillin, MAGP-1 retained the ability to interact with TGFβ-1, and active TGFβ-1 did not bind fibrillin in the absence of MAGP-1. The absence of MAGP was sufficient to raise the amount of total TGFβ stored in the ECM of cultured cells, suggesting that the MAGPs compete with the TGFβ large latent complex for binding to microfibrils. Together, these results indicate that MAGP-1 plays an active role in TGFβ signaling in the ECM.


2007 ◽  
Vol 292 (2) ◽  
pp. F789-F795 ◽  
Author(s):  
Margo P. Cohen ◽  
Gregory T. Lautenslager ◽  
Elizabeth Hud ◽  
Elizabeth Shea ◽  
Amy Wang ◽  
...  

Glomerular cells in culture respond to albumin containing Amadori glucose adducts (the principal serum glycated protein), with activation of protein kinase C-β1, increased expression of transforming growth factor (TGF)-β1, the TGF-β type II signaling receptor, and the extracellular matrix proteins α1(IV) collagen and fibronectin and with decreased production of the podocyte protein nephrin. Decreasing the burden of glycated albumin in diabetic db/db mice significantly reduces glomerular overexpression of TGF-β1 mRNA, restores glomerular nephrin immunofluorescence, and lessens proteinuria, mesangial expansion, renal extracellular matrix protein production, and increased glomerular vascular endothelial growth factor (VEGF) immunostaining. In the present study, db/db mice were treated with a small molecule, designated 23CPPA, that inhibits the nonenzymatic condensation of glucose with the albumin protein to evaluate whether increased glycated albumin influences the production of VEGF receptors (VEGFRs) and type IV collagen subchains and ameliorates the development of renal insufficiency. Renal levels of VEGF and VEGFR-1 proteins and serum creatinine concentrations were significantly higher and renal levels of α3(IV) collagen and nephrin proteins and endogenous creatinine clearance values were significantly lower in control diabetic than in age-matched nondiabetic ( db/m) mice. These changes were significantly attenuated in db/db littermate mice treated from 9 to 18 wk of age with 23CPPA. The findings indicate that inhibiting excess nonenzymatic glycation of serum albumin improves renal molecular biology abnormalities and protects against the development of renal insufficiency in the db/db mouse.


Sign in / Sign up

Export Citation Format

Share Document