Effect of pioglitazone on the expression of ubiquitin proteasome system and autophagic proteins in rat pancreas with metabolic syndrome

Author(s):  
Sevil Cayli ◽  
Ebru Alimogullari ◽  
Ilkay Piskin ◽  
Ayca Bilginoglu ◽  
Hilal Nakkas
2020 ◽  
Vol 4 (4) ◽  
pp. 811-817
Author(s):  
Thao Thi Phuong Dang ◽  
Linh My Dao ◽  
Anh Man Huynh ◽  
Dan Thi Hanh Vo

Metabolic syndrome is a collection of disorders related to metabolisms such as obesity, lipid disorders, hyper/hypoglycemia, ... Metabolic syndrome can lead to cardiovascular diseases, strokes, and diabetes - the leading death causes in the world. In many cases, metabolic disorders are original by the redundant/ reduction of insulin- the most important hormone in metabolism regulation. Both of them are involved in beta-cells dysfunction. Many mechanisms related to this phenomenon has been approved, notably mitochondrial dysfunction and the Ubiquitin proteasome system impairment. UCH-L1 is a protein belonging to the Ubiquitin proteasome system and highly expressed in beta cells. Previous studies reported that decrease UCH-L1 function can alter metabolism and lead to b cell apoptosis under various nutritional conditions, however, the mechanism has not been clarified. In this study, we proposed a Drosophila melanogaster model that expresses many symptoms of metabolic syndrome, by knocking down dUCH (Drosophila homolog of UCH-L1) specifically in Insulin-producing cells. Our fruit fly model had abnormal metabolism, physiology, loss of insulinproducing cells, and mitochondria over-workload, similar to metabolic syndrome in humans. These results suggested that this model is suitable for further studies on the role of UCH-L1 in b cells, as well as a potential model in metabolism diseases' drug screening.


2005 ◽  
Vol 41 ◽  
pp. 173-186 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.


2005 ◽  
Vol 41 (1) ◽  
pp. 173 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document