scholarly journals Dehydroepiandrosterone sulphate (DHEAS) concentrations stringently regulate fertilisation, embryo development and IVF outcomes: are we looking at a potentially compelling ‘oocyte-related factor’ in oocyte activation?

Author(s):  
Bindu N. Chimote ◽  
Natachandra M. Chimote
2015 ◽  
Vol 104 (3) ◽  
pp. e295
Author(s):  
A.S. Polackwich ◽  
E.S. Sabanegh ◽  
N. Desai

Reproduction ◽  
2013 ◽  
Vol 145 (5) ◽  
pp. 471-478 ◽  
Author(s):  
S Morado ◽  
P Cetica ◽  
M Beconi ◽  
J G Thompson ◽  
G Dalvit

The knowledge concerning redox and reactive oxygen species (ROS)-mediated regulation of early embryo development is scarce and remains controversial. The aim of this work was to determine ROS production and redox state during early in vitro embryo development in sperm-mediated and parthenogenetic activation of bovine oocytes. Sperm-mediated oocyte activation was carried out in IVF-modified synthetic oviductal fluid (mSOF) with frozen–thawed semen. Parthenogenetic activation was performed in TALP plus ionomycin and then in IVF-mSOF with 6-dimethylaminopurine plus cytochalasin B. Embryos were cultured in IVF-mSOF. ROS and redox state were determined at each 2-h interval (7–24 h from activation) by 2′,7′-dichlorodihydrofluorescein diacetate and RedoxSensor Red CC-1 fluorochromes respectively. ROS levels and redox state differed between activated and non-activated oocytes (P<0.05 by ANOVA). In sperm-activated oocytes, an increase was observed between 15 and 19 h (P<0.05). Conversely, in parthenogenetically activated oocytes, we observed a decrease at 9 h (P<0.05). In sperm-activated oocytes, ROS fluctuated throughout the 24 h, presenting peaks around 7, 19, and 24 h (P<0.05), while in parthenogenetic activation, peaks were detected at 7, 11, and 17 h (P<0.05). In the present work, we found clear distinctive metabolic patterns between normal and parthenogenetic zygotes. Oxidative activity and ROS production are an integral part of bovine zygote behavior, and defining a temporal pattern of change may be linked with developmental competence.


2007 ◽  
Vol 19 (1) ◽  
pp. 281 ◽  
Author(s):  
I. Lagutina ◽  
G. Lazzari ◽  
C. Galli

Several factors affect nuclear transfer success. These include efficient parthenogenetic activation and embryo culture medium that should efficiently support pre-implantation development of good quality blastocysts. We investigated pig oocyte activation and embryo development in SOFaa in response to ionomycin (Io = 5 µM Io for 4 min; Io° = 15 µM Io for 20 min) and electric impulse (EL; one 30-µs pulse of DC 1.5 kV cm−1 in the presence of 50 µM Ca) in combination with 2 mM 6-DMAP or 10 µg mL−1 cycloheximide (CHX) +5 µg mL−1 cytochalasin B (CB) for 4 h. In addition, we studied the effect of elevated (1 mM) (Cheong et al. 2002 Mol. Reprod. Dev. 61, 488) in comparison with 50 µM Ca during EL activation on embryo development in SOFaa and NCSUaa-23. Porcine oocytes were recovered from slaughtered donors and matured in vitro for 44 h in DMEM-F12 supplemented with 10% FCS, 0.05 IU LH and FSH (Menogon®, Ferring, Milan, Italy), 0.3 mM cystine, 0.5 mM cysteamine, 50 ng mL−1 long-EGF, 100 ng mL−1 long-IGF1, 5 ng mL−1 bFGF (Sigma-Aldrich, Milan, Italy) in 5% CO2 at 38.5°C. The rates of cleavage, blastocyst formation (BL) and BL cell number on Day 7 (BL-D7) were recorded. All experiments were done with 3 replicates. The data were compared by chi-square test. There was no difference in the ability of Io (all groups) and EL + CB activated oocytes to cleave, whereas the additional treatment of EL-activated oocytes with DMAP and CHX + CB significantly increased cleavage. Io activation resulted in poor blastocyst development in comparison with all EL-activated groups (see Table 1). When calcium levels were elevated during EL activation, significantly more embryos developed in SOFaa (35.6%, n = 191 vs. 26%, n = 192; P &lt; 0.05), but no differences were observed with culture in NCSUaa-23 (about 56%). The BL rate was significantly higher in NCSUaa-23 vs. SOFaa (55.9%, n = 68 vs. 34.8%, n = 69, respectively); however, the BL total cell number was significantly higher in SOFaa (58 ± 18, n = 40 vs. 86 ± 35, n = 56, respectively; P &lt; 0.05). In conclusion, we have found that SOFaa and NCSUaa-23 differ in ability to support pig parthenogenetic embryo development. EL activation combined with elevated Ca significantly increased the embryo developmental capacity in SOFaa but not in NCSUaa-23. NCSUaa-23 was more efficient for embryo culture, whereas SOF produced BLs of higher quality. Table 1.Effect of activation protocol on the development of pig parthenogenetic embryos in SOFaa This work was supported by grants ISS-CS11 and Fondazione Cariplo.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 269-274 ◽  
Author(s):  
Isoji Sasagawa ◽  
R. Yanagimachi

SummaryIn the mouse, mature oocytes injected with prespermatozoal cell nuclei remain unactivated. Additional stimulation is needed to trigger oocyte activation leading to embryo development. We compared various electrical stimulations, treatment with cycloheximide alone or in combination with electrical stimulation, and injection of sperm-borne oocyte-activating factor (oscillogen) in terms of their oocyte activation and embryo development rates. Of all the treatments tested, a single electrical pulse (1.0 kV / cm, 128 μs) was the simplest, yet very effective, in allowing the development of the oocytes injected with spermatid nuclei.


2020 ◽  
Vol 89 ◽  
pp. 103052
Author(s):  
A. Gambini ◽  
M.B. Rodriguez ◽  
O. Briski ◽  
A. Flores Bragulat ◽  
N. Demergasi ◽  
...  

2020 ◽  
Vol 26 (10) ◽  
pp. 773-783
Author(s):  
Chen Chen ◽  
Tingye Sun ◽  
Mingru Yin ◽  
Zhiguang Yan ◽  
Weina Yu ◽  
...  

Abstract Oocyte activation induced by calcium oscillations is an important process in normal fertilization and subsequent embryogenesis. In the clinical-assisted reproduction, artificial oocyte activation (AOA) is an effective method to improve the clinical outcome of patients with null or low fertilization rate after ICSI. However, little is known about the effect of AOA on preimplantation embryo development in cases with normal fertilization by ICSI. Here, we used ionomycin at different concentrations to activate oocytes after ICSI with normal sperm and evaluated energy metabolism and preimplantation embryo development. We found that a high concentration of ionomycin increased the frequency and amplitude of calcium oscillation patterns, affecting the balance of mitochondrial energy metabolism, leading to increased reactive oxygen species (ROS) and decreased ATP. Eventually, it increases DNA damage and decreases blastocyst formation. In addition, the addition of vitamin C to the culture medium ameliorated the increase in ROS and DNA damage and rescued the abnormal embryo development caused by excessive ionomycin activation. This study provides a perspective that the improper application of AOA may have adverse effects on preimplantation embryo development. Thus, clinical AOA treatment should be cautiously administered.


Zygote ◽  
2008 ◽  
Vol 16 (4) ◽  
pp. 279-284 ◽  
Author(s):  
E. García-Mengual ◽  
J. Alfonso ◽  
I. Salvador ◽  
C-C. Duque ◽  
M-A. Silvestre

SummaryThe viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 μM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 μs) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5–81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2–32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.


2008 ◽  
Vol 17 (6) ◽  
pp. 764-771 ◽  
Author(s):  
Elke Heytens ◽  
Reza Soleimani ◽  
Sylvie Lierman ◽  
Simon De Meester ◽  
Jan Gerris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document