A method for the chemical anchoring of carbon nanotubes onto carbon fibre and its impact on the strength of carbon fibre composites

2010 ◽  
Vol 46 (5) ◽  
pp. 1322-1327 ◽  
Author(s):  
Alexandre Vivet ◽  
Bessem Ben Doudou ◽  
Christophe Poilâne ◽  
Jun Chen ◽  
M’Hamed Ayachi
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
T. R. Pozegic ◽  
J. V. Anguita ◽  
I. Hamerton ◽  
K. D. G. I. Jayawardena ◽  
J-S. Chen ◽  
...  

2011 ◽  
Vol 1304 ◽  
Author(s):  
Benjamin L. Farmer ◽  
Mark A. Beard ◽  
Oana Ghita ◽  
Robert Allen ◽  
Ken E. Evans

ABSTRACTLong carbon fibre polymer composites represent the state-of-the-art materials technology for high performance weight driven structures, such as airframes. Although a significant amount of optimisation remains to be done to fully exploit the benefits of long fibre composites, these materials are relatively speaking still very crude, when compared to what nature has achieved with wood or bone for example. Nanomaterials, and specifically carbon nanotubes (CNTs), have teased with their spectacular mechanical and physical properties in isolation. These headline properties have prompted much work into the manufacturing of composite materials using CNTs as reinforcements, but thus far, successful exploitation of these impressive properties has been modest. A gap remains before these materials represent a real competition to long carbon fibre composites, even though fairly modest applications such as CNTs as fillers for matrix toughening and imparting electrical functionality are showing some promise. In this paper a critique is made of various reinforcement approaches through the lens of ’nano-augmented, ’nano-engineered’ and ’nano-enabled’ categories as defined by Airbus. These approaches are compared to an analysis of nature’s ’baseline’. A new ’nano-enabled’ strategy for the growth of fully aligned and dispersed bulk CNT composite materials and structures, allowing for simultaneous multi-scalar morphological and topological optimisation, is described. This new strategy, analogous to nature’s approach, consists of the vapour phase growth of aligned forests of carbon nanotubes coupled to the environment of Additive Layer Manufacturing (ALM). Early feasibility results are presented and currently identified challenges to successful scale-up are discussed.


2016 ◽  
Vol 51 (6) ◽  
pp. 783-795 ◽  
Author(s):  
Júlio C Santos ◽  
Luciano MG Vieira ◽  
Túlio H Panzera ◽  
André L Christoforo ◽  
Marco A Schiavon ◽  
...  

The work describes the manufacturing and testing of novel hybrid epoxy/carbon fibre composites with silica micro and poly-diallyldimethylammonium chloride-functionalised nanoparticles. A specific chemical dispersion procedure was applied using the poly-diallyldimethylammonium chloride to avoid clustering of the silica nanoparticles. The influence of the various manufacturing parameters, particles loading, and mechanical properties of the different phases has been investigated with a rigorous Design of Experiment technique based on a full factorial design (2131). Poly-diallyldimethylammonium chloride-functionalised silica nanoparticles were able to provide a homogenous dispersion, with a decrease of the apparent density and enhancement of the mechanical properties in the hybrid carbon fibre composites. Compared to undispersed carbon fibre composite laminates, the use of 2 wt% functionalised nanoparticles permitted to increase the flexural modulus by 47% and the flexural strength by 15%. The hybrid carbon fibre composites showed also an increase of the tensile modulus (9%) and tensile strength (5.6%).


Sign in / Sign up

Export Citation Format

Share Document