Study on critical-sized ultra-high molecular weight polyethylene wear particles loaded with alendronate sodium: in vitro release and cell response

Author(s):  
Yumei Liu ◽  
Feng Shi ◽  
Kemeng Gong ◽  
Yang Liu ◽  
Wei Zhi ◽  
...  
Author(s):  
P Campbell ◽  
P Doom ◽  
F Dorey ◽  
H C Amstutz

The wear rate of ultra-high molecular weight polyethylene total hip replacement components is known to be influenced by various factors such as material and design. However, it is not known if these factors affect the size or morphology of the wear particles. The aim of this study was to compare the polyethylene wear particles from hip replacements of differing bearing materials and designs. Tissues were obtained at the revision surgeries of patients with surface replacements with titanium alloy or cobalt-chrome alloy femoral components up to 51 mm in diameter, and stem-type hip replacements with cobalt-chrome or alumina ceramic femoral components that were 28 or 32 mm in diameter. The polyethylene particles were isolated following tissue digestion and density gradient separation, and then studied by scanning electron microscopy. A computerized image analysis system was used to measure the diameter and length of the particles. The majority of wear particles were submicron in diameter. No systematic differences in size and morphology were found between the groups in this study. The similarity in size and morphology of the wear particles suggested that the same basic wear mechanisms were occurring in these components.


Author(s):  
J Bell ◽  
A A Besong ◽  
J L Tipper ◽  
E Ingham ◽  
B M Wroblewski ◽  
...  

Ultra-high molecular weight polyethylene (UHMWPE) wear debris induced osteolysis has a major role in the late aseptic loosening and ultimate failure of total hip replacements (THR). Clinically relevant in vitro simulations of wear are essential to predict the osteolytic potential of bearing surfaces in artificial hip joints. Newborn calf or bovine serum has been accepted as a boundary lubricant for such in vitro tests, but its biological stability has been questioned. This study compared the wear factors, number of wear particles and levels of microbial contamination produced in bovine serum and a gelatin-based lubricant. The wear factors produced by the two lubricants were not significantly different, however the wear debris morphology produced was substantially different. The bovine serum became contaminated with micro-organisms within 28 h, whereas the protein-based lubricant remained uncontaminated. The results showed that bovine serum was not a stable boundary lubricant. They also showed that although the wear factors for the two solutions were not significantly different, the protein-based lubricant was not a suitable alternative to bovine serum because the wear debris produced was not clinically relevant.


Sign in / Sign up

Export Citation Format

Share Document