The Crystal Structures of Two Hydro-closo-Borates with Divalent Tin in Comparison: Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O
AbstractSingle crystals of Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O are easily accessible by reactions of aqueous solutions of the acids (H3O)2[B10H10] and (H3O)2[B12H12] with an excess of tin metal powder after isothermal evaporation of the clear brines. Both compounds crystallize with similar structures in the triclinic system with space group P$$\bar{1 }$$ 1 ¯ and Z = 2. The crystallographic main features are electroneutral $${}_{\infty }^{1} \{$$ ∞ 1 { Sn(H2O)3/1[B10H10]3/3} and $${}_{\infty }^{1} \{$$ ∞ 1 { Sn(H2O)3/1[B12H12]3/3} double chains running along the a-axes. Each Sn2+ cation is coordinated by three water molecules of hydration (d(Sn–O) = 221–225 pm for the B10 and d(Sn–O) = 222–227 pm for the B12 compound) and additionally by hydridic hydrogen atoms of the three nearest boron clusters (d(Sn–H) = 281–322 pm for the B10 and d(Sn–H) = 278–291 pm for the B12 compound), which complete the coordination sphere. Between these tin(II)-bonded water and the three or four interstitial crystal water molecules, classical bridging hydrogen bonds are found, connecting the double chains to each other. Furthermore, there is also non-classical hydrogen bonding between the anionic [BnHn]2− (n = 10 and 12) clusters and the crystal water molecules pursuant to B–Hδ−$$\cdots$$ ⋯ δ+H–O interactions often called dihydrogen bonds.