KATZ centrality with biogeography-based optimization for influence maximization problem

2020 ◽  
Vol 40 (1) ◽  
pp. 205-226
Author(s):  
Abbas Salehi ◽  
Behrooz Masoumi
Author(s):  
Liman Du ◽  
Wenguo Yang ◽  
Suixiang Gao

The number of social individuals who interact with their friends through social networks is increasing, leading to an undeniable fact that word-of-mouth marketing has become one of the useful ways to promote sale of products. The Constrained Profit Maximization in Attribute network (CPMA) problem, as an extension of the classical influence maximization problem, is the main focus of this paper. We propose the profit maximization in attribute network problem under a cardinality constraint which is closer to the actual situation. The profit spread metric of CPMA calculates the total benefit and cost generated by all the active nodes. Different from the classical Influence Maximization problem, the influence strength should be recalculated according to the emotional tendency and classification label of nodes in attribute networks. The profit spread metric is no longer monotone and submodular in general. Given that the profit spread metric can be expressed as the difference between two submodular functions and admits a DS decomposition, a three-phase algorithm named as Marginal increment and Community-based Prune and Search(MCPS) Algorithm frame is proposed which is based on Louvain algorithm and logistic function. Due to the method of marginal increment, MPCS algorithm can compute profit spread more directly and accurately. Experiments demonstrate the effectiveness of MCPS algorithm.


Computing ◽  
2021 ◽  
Author(s):  
Zahra Aghaee ◽  
Mohammad Mahdi Ghasemi ◽  
Hamid Ahmadi Beni ◽  
Asgarali Bouyer ◽  
Afsaneh Fatemi

In a social network the individuals connected to one another become influenced by one another, while some are more influential than others and able to direct groups of individuals towards a move, an idea and an entity. These individuals are named influential users. Attempt is made by the social network researchers to identify such individuals because by changing their behaviors and ideologies due to communications and the high influence on one another would change many others' behaviors and ideologies in a given community. In information diffusion models, at all stages, individuals are influenced by their neighboring people. These influences and impressions thereof are constructive in an information diffusion process. In the Influence Maximization problem, the goal is to finding a subset of individuals in a social network such that by activating them, the spread of influence is maximized. In this work a new algorithm is presented to identify most influential users under the linear threshold diffusion model. It uses explicit multimodal evolutionary algorithms. Four different datasets are used to evaluate the proposed method. The results show that the precision of our method in average is improved 4.8% compare to best known previous works.


2019 ◽  
Vol 11 (4) ◽  
pp. 95
Author(s):  
Wang ◽  
Zhu ◽  
Liu ◽  
Wang

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.


2021 ◽  
Author(s):  
Sun Chengai ◽  
Duan Xiuliang ◽  
Qiu Liqing ◽  
Shi Qiang ◽  
Li Tengteng

Abstract A core issue in influence propagation is influence maximization, which aims to find a group of nodes under a specific information diffusion model and maximize the final influence of this group of nodes. The limitation of the existing researches is that they excessively depend on the information diffusion model and randomly set the propagation ability (probability). Therefore, most of the algorithms for solving the influence maximization problem are basically difficult to expand in large social networks. Another challenge is that fewer researchers have paid attention to the problem of the large difference between the estimated influence spread and the actual influence spread. A measure to solve the influence maximization problem is applying advanced neural network architecture also represents learning method. Based on this idea, the paper proposes Representation Learning for Influence Maximization (RLIM) algorithm. The premise of this algorithm is to construct the influence cascade of each source node. The key is to adopt neural network architecture to realize the prediction of propagation ability. The purpose is to apply the propagation ability to the influence maximization problem by representation learning. Furthermore, the results of the experiments show that RLIM algorithm has greater diffusion ability than the state-of-the-art algorithms on different online social network data sets, and the diffusion of information is more accurate.


Sign in / Sign up

Export Citation Format

Share Document