On new methods to construct lower bounds in simplicial branch and bound based on interval arithmetic
AbstractBranch and Bound (B&B) algorithms in Global Optimization are used to perform an exhaustive search over the feasible area. One choice is to use simplicial partition sets. Obtaining sharp and cheap bounds of the objective function over a simplex is very important in the construction of efficient Global Optimization B&B algorithms. Although enclosing a simplex in a box implies an overestimation, boxes are more natural when dealing with individual coordinate bounds, and bounding ranges with Interval Arithmetic (IA) is computationally cheap. This paper introduces several linear relaxations using gradient information and Affine Arithmetic and experimentally studies their efficiency compared to traditional lower bounds obtained by natural and centered IA forms and their adaption to simplices. A Global Optimization B&B algorithm with monotonicity test over a simplex is used to compare their efficiency over a set of low dimensional test problems with instances that either have a box constrained search region or where the feasible set is a simplex. Numerical results show that it is possible to obtain tight lower bounds over simplicial subsets.