Observation of a Possible Metallic State Induced by a Parallel Magnetic Field in Superconducting Au0.7In0.3 Samples With Very Low Normal-state Sheet Resistance

2007 ◽  
Vol 147 (5-6) ◽  
pp. 623-631 ◽  
Author(s):  
M. M. Rosario ◽  
H. Wang ◽  
Yu. Zadorozhny ◽  
Y. Liu
2000 ◽  
Vol 53 (4) ◽  
pp. 537
Author(s):  
J. S. Thakur ◽  
D. Neilson

We discuss the destabilisation of the electron 2D metallic state by an in-plane magnetic field. We demonstrate that such a field can destabilise the metallic state through spin polarisation which significantly enhances the exchange correlations between electrons. We find that the conducting phase of the fully spin polarised system is almost completely suppressed. We discuss this phenomenon within a memory function formalism which treats both disorder and exchange-correlation effects. We determine the shift in the position of the metal–insulator phase boundary as the system is polarised by an increasing parallel magnetic field.


1992 ◽  
Vol 06 (05n06) ◽  
pp. 509-526
Author(s):  
Subir Sachdev

A phenomenological model, F, of the superconducting phase of systems with spin-charge separation and antiferromagnetically induced pairing is studied. Above Hc1, magnetic flux can always pierce the superconductor in vortices with flux hc/2e, but regimes are found in which vortices with flux hc/e are preferred. Little-Park and other experiments, which examine periodicities with a varying magnetic field, always observe a period of hc/2e. The low energy properties of a symplectic large-N expansion of a model of the cuprate superconductors are argued to be well described by F. This analysis and some normal state properties of the cuprates suggest that hc/e vortices should be stable at the lowest dopings away from the insulating state at which superconductivity first occurs.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
V. P. Jovanović ◽  
H. Raffy ◽  
Z. Z. Li ◽  
G. Reményi ◽  
P. Monceau

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan-Hom Li ◽  
Yen-Ju Chen

AbstractThis study determines the effect of the configuration of the magnetic field on the movement of gas bubbles that evolve from platinum electrodes. Oxygen and hydrogen bubbles respectively evolve from the surface of the anode and cathode and behave differently in the presence of a magnetic field due to their paramagnetic and diamagnetic characteristics. A magnetic field perpendicular to the surface of the horizontal electrode causes the bubbles to revolve. Oxygen and hydrogen bubbles revolve in opposite directions to create a swirling flow and spread the bubbles between the electrodes, which increases conductivity and the effectiveness of electrolysis. For vertical electrodes under the influence of a parallel magnetic field, a horizontal Lorentz force effectively detaches the bubbles and increases the conductivity and the effectiveness of electrolysis. However, if the layout of the electrodes and magnetic field results in upward or downward Lorentz forces that counter the buoyancy force, a sluggish flow in the duct inhibits the movement of the bubbles and decreases the conductivity and the charging performance. The results in this study determine the optimal layout for an electrode and a magnetic field to increase the conductivity and the effectiveness of water electrolysis, which is applicable to various fields including energy conversion, biotechnology, and magnetohydrodynamic thruster used in seawater.


2011 ◽  
Vol 80 (Suppl.A) ◽  
pp. SA104 ◽  
Author(s):  
Kiyohiro Sugiyama ◽  
Yusuke Hirose ◽  
Kentaro Enoki ◽  
Shugo Ikeda ◽  
Etsuji Yamamoto ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhuoyu Chen ◽  
Bai Yang Wang ◽  
Adrian G. Swartz ◽  
Hyeok Yoon ◽  
Yasuyuki Hikita ◽  
...  

AbstractAnomalous metallic behavior, marked by a saturating finite resistivity much lower than the Drude estimate, has been observed in a wide range of two-dimensional superconductors. Utilizing the electrostatically gated LaAlO3/SrTiO3 interface as a versatile platform for superconductor-metal quantum phase transitions, we probe variations in the gate, magnetic field, and temperature to construct a phase diagram crossing from superconductor, anomalous metal, vortex liquid, to the Drude metal state, combining longitudinal and Hall resistivity measurements. We find that the anomalous metal phases induced by gating and magnetic field, although differing in symmetry, are connected in the phase diagram and exhibit similar magnetic field response approaching zero temperature. Namely, within a finite regime of the anomalous metal state, the longitudinal resistivity linearly depends on the field while the Hall resistivity diminishes, indicating an emergent particle-hole symmetry. The universal behavior highlights the uniqueness of the quantum bosonic metallic state, distinct from bosonic insulators and vortex liquids.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3171-3174
Author(s):  
F. F. BALAKIREV ◽  
J. B. BETTS ◽  
G. S. BOEBINGER ◽  
S. ONO ◽  
Y. ANDO ◽  
...  

We report low-temperature Hall coefficient in the normal state of the high-Tc superconductor Bi 2 Sr 2-x La x CuO 6+δ. The Hall coefficient was measured down to 0.5 K by suppressing superconductivity with a 60 T pulsed magnetic field. The carrier concentration was varied from overdoped to underdoped regimes by partially substituting Sr with La in a set of five samples. The observed saturation of the Hall coefficient at low temperatures suggests the ability to extract the carrier concentration of each sample. The most underdoped sample exhibits a diverging Hall coefficient at low temperatures, consistent with a depletion of carriers in the insulating ground state. The Hall number exhibits a sharp peak providing additional support for the existence of a phase boundary at the optimal doping.


Sign in / Sign up

Export Citation Format

Share Document