Numerical modeling of two-phase liquid flow in fractal porous medium

2004 ◽  
Vol 40 (5) ◽  
pp. 474-481
Author(s):  
E. P. Kurochkina ◽  
O. N. Soboleva ◽  
M. I. Epov
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sandor I. Bernad ◽  
Romeo Susan-Resiga

The paper presents a numerical simulation and analysis of the flow inside a poppet valve. First, the single-phase (liquid) flow is investigated, and an original model is introduced for quantitatively describing the vortex flow. Since an atmospheric outlet pressure produces large negative absolute pressure regions, a two-phase (cavitating) flow analysis is also performed. Both pressure and density distributions inside the cavity are presented, and a comparison with the liquid flow results is performed. It is found that if one defines the cavity radius such that up to this radius the pressure is no larger than the vaporization pressure, then both liquid and cavitating flow models predict the cavity extent. The current effort is based on the application of the recently developed full cavitation model that utilizes the modified Rayleigh-Plesset equations for bubble dynamics.


2011 ◽  
Vol 368-373 ◽  
pp. 1604-1607
Author(s):  
Hong Yan Zhang ◽  
Hai Hong Dong

In this article, Spiral belt static mixer with changing diameter was taken as the object. The numerical simulation method was used to investigate the mixing process of two-phase liquid–liquid flow in water treatment by a commercial CFD code,namely Fluent.The k-ε model and species transport model were established to research this project. Then the mixing effect was compared with that of HEV static mixer. The result showed that spiral belt static mixer with changing diameter promote the mixing effect greatly. The mixing effect relative to that of HEV static mixer increased 10 times and the the pressure loss only increased 3 times.


Sign in / Sign up

Export Citation Format

Share Document