scholarly journals Training AI-Based Feature Extraction Algorithms, for Micro CT Images, Using Synthesized Data

2021 ◽  
Vol 40 (1) ◽  
Author(s):  
Matthew Konnik ◽  
Bahar Ahmadi ◽  
Nicholas May ◽  
Joseph Favata ◽  
Zahra Shahbazi ◽  
...  

AbstractX-ray computed tomography (CT) is a powerful technique for non-destructive volumetric inspection of objects and is widely used for studying internal structures of a large variety of sample types. The raw data obtained through an X-ray CT practice is a gray-scale 3D array of voxels. This data must undergo a geometric feature extraction process before it can be used for interpretation purposes. Such feature extraction process is conventionally done manually, but with the ever-increasing trend of image data sizes and the interest in identifying more miniature features, automated feature extraction methods are sought. Given the fact that conventional computer-vision-based methods, which attempt to segment images into partitions using techniques such as thresholding, are often only useful for aiding the manual feature extraction process, machine-learning based algorithms are becoming popular to develop fully automated feature extraction processes. Nevertheless, the machine-learning algorithms require a huge pool of labeled data for proper training, which is often unavailable. We propose to address this shortage, through a data synthesis procedure. We will do so by fabricating miniature features, with known geometry, position and orientation on thin silicon wafer layers using a femtosecond laser machining system, followed by stacking these layers to construct a 3D object with internal features, and finally obtaining the X-ray CT image of the resulting 3D object. Given that the exact geometry, position and orientation of the fabricated features are known, the X-ray CT image is inherently labeled and is ready to be used for training the machine learning algorithms for automated feature extraction. Through several examples, we will showcase: (1) the capability of synthesizing features of arbitrary geometries and their corresponding labeled images; and (2) use of the synthesized data for training machine-learning based shape classifiers and features parameter extractors.

Author(s):  
Soundariya R.S. ◽  
◽  
Tharsanee R.M. ◽  
Vishnupriya B ◽  
Ashwathi R ◽  
...  

Corona virus disease (Covid - 19) has started to promptly spread worldwide from April 2020 till date, leading to massive death and loss of lives of people across various countries. In accordance to the advices of WHO, presently the diagnosis is implemented by Reverse Transcription Polymerase Chain Reaction (RT- PCR) testing, that incurs four to eight hours’ time to process test samples and adds 48 hours to categorize whether the samples are positive or negative. It is obvious that laboratory tests are time consuming and hence a speedy and prompt diagnosis of the disease is extremely needed. This can be attained through several Artificial Intelligence methodologies for prior diagnosis and tracing of corona diagnosis. Those methodologies are summarized into three categories: (i) Predicting the pandemic spread using mathematical models (ii) Empirical analysis using machine learning models to forecast the global corona transition by considering susceptible, infected and recovered rate. (iii) Utilizing deep learning architectures for corona diagnosis using the input data in the form of X-ray images and CT scan images. When X-ray and CT scan images are taken into account, supplementary data like medical signs, patient history and laboratory test results can also be considered while training the learning model and to advance the testing efficacy. Thus the proposed investigation summaries the several mathematical models, machine learning algorithms and deep learning frameworks that can be executed on the datasets to forecast the traces of COVID-19 and detect the risk factors of coronavirus.


Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 365
Author(s):  
Taha ValizadehAslani ◽  
Zhengqiao Zhao ◽  
Bahrad A. Sokhansanj ◽  
Gail L. Rosen

Machine learning algorithms can learn mechanisms of antimicrobial resistance from the data of DNA sequence without any a priori information. Interpreting a trained machine learning algorithm can be exploited for validating the model and obtaining new information about resistance mechanisms. Different feature extraction methods, such as SNP calling and counting nucleotide k-mers have been proposed for presenting DNA sequences to the model. However, there are trade-offs between interpretability, computational complexity and accuracy for different feature extraction methods. In this study, we have proposed a new feature extraction method, counting amino acid k-mers or oligopeptides, which provides easier model interpretation compared to counting nucleotide k-mers and reaches the same or even better accuracy in comparison with different methods. Additionally, we have trained machine learning algorithms using different feature extraction methods and compared the results in terms of accuracy, model interpretability and computational complexity. We have built a new feature selection pipeline for extraction of important features so that new AMR determinants can be discovered by analyzing these features. This pipeline allows the construction of models that only use a small number of features and can predict resistance accurately.


BMC Materials ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Emre Topal ◽  
Zhongquan Liao ◽  
Markus Löffler ◽  
Jürgen Gluch ◽  
Jian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document