Effects of recent climate and environmental changes on the ecology of a boreal forest lake in Manitoba, Canada

2021 ◽  
Vol 66 (1) ◽  
pp. 15-27
Author(s):  
C. E. Luszczek ◽  
A. S. Medeiros ◽  
B. B. Wolfe ◽  
R. Quinlan
2020 ◽  
Vol 8 ◽  
Author(s):  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Weihan Jia ◽  
Kai Li ◽  
Luidmila Pestryakova ◽  
...  

Plant diversity in the Arctic and at high altitudes strongly depends on and rebounds to climatic and environmental variability and is nowadays tremendously impacted by recent climate warming. Therefore, past changes in plant diversity in the high Arctic and high-altitude regions are used to infer climatic and environmental changes through time and allow future predictions. Sedimentary DNA (sedDNA) is an established proxy for the detection of local plant diversity in lake sediments, but still relationships between environmental conditions and preservation of the plant sedDNA proxy are far from being fully understood. Studying modern relationships between environmental conditions and plant sedDNA will improve our understanding under which conditions sedDNA is well-preserved helping to a.) evaluate suitable localities for sedDNA approaches, b.) provide analogues for preservation conditions and c.) conduct reconstruction of plant diversity and climate change. This study investigates modern plant diversity applying a plant-specific metabarcoding approach on sedimentary DNA of surface sediment samples from 262 lake localities covering a large geographical, climatic and ecological gradient. Latitude ranges between 25°N and 73°N and longitude between 81°E and 161°E, including lowland lakes and elevated lakes up to 5168 m a.s.l. Further, our sampling localities cover a climatic gradient ranging in mean annual temperature between -15°C and +18°C and in mean annual precipitation between 36­ and 935 mm. The localities in Siberia span over a large vegetational gradient including tundra, open woodland and boreal forest. Lake localities in China include alpine meadow, shrub, forest and steppe and also cultivated areas. The assessment of plant diversity in the underlying dataset was conducted by a specific plant metabarcoding approach. We provide a large dataset of genetic plant diversity retrieved from surface sedimentary DNA from lakes in Siberia and China spanning over a large environmental gradient. Our dataset encompasses sedDNA sequence data of 259 surface lake sediments and three soil samples originating from Siberian and Chinese lakes. We used the established chloroplastidal P6 loop trnL marker for plant diversity assessment. The merged, filtered and assigned dataset includes 15,692,944 read counts resulting in 623 unique plant DNA sequence types which have a 100% match to either the EMBL or to the specific Arctic plant reference database. The underlying dataset includes a taxonomic list of identified plants and results from PCR replicates, as well as extraction blanks (BLANKs) and PCR negative controls (NTCs), which were run along with the investigated lake samples. This collection of plant metabarcoding data from modern lake sediments is still ongoing and additional data will be released in the future.


2012 ◽  
Vol 48 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Bruce P. Finney ◽  
Nancy H. Bigelow ◽  
Valerie A. Barber ◽  
Mary E. Edwards

1993 ◽  
Vol 12 (9) ◽  
pp. 1709-1717 ◽  
Author(s):  
D.G. Thompson ◽  
S.B. Holmes ◽  
K. Wainio-Keizer ◽  
L. Macdonald ◽  
K.R. Solomon

2006 ◽  
Vol 84 (1) ◽  
pp. 151-163 ◽  
Author(s):  
M. Anne Harris ◽  
Brian F. Cumming ◽  
John P. Smol

New Brunswick lakes are subjected to multiple environmental stressors, such as atmospheric acid deposition and climate change. In the absence of long-term environmental data, the impacts of these stressors are not well understood. Long-term effects of environmental change on diatom species assemblages were assessed in the sediments of 16 New Brunswick lakes using paleolimnological approaches. A regional trend of increasing Cyclotella stelligera Cleve & Gunrow and decreasing Aulacoseira species complex was recorded in most lakes. Detailed paleolimnological analyses of Wolfe, Cundy, and West Long lakes revealed varying degrees of species change, with assemblage shifts beginning ca. 1900 CE (common era). These species trends are not consistent with acidification. However, linear regression of mean July temperature with time for two New Brunswick historical instrumental temperature records revealed statistically significant warming over the past century. The shift from heavily silicified tychoplanktonic Aulacoseira species to small planktonic diatom species, such as C. stelligera, is consistent with paleolimnological inferences of warming trends recorded in several other lake regions of the Northern Hemisphere. These assemblage shifts are likely due to recent climate change and may be mediated by reduced ice cover and (or) increased thermal stability (decreased lake mixing) during the open water period.


2021 ◽  
Author(s):  
Tingwan Yang ◽  
Hongyan Zhao ◽  
Zhengyu Xia ◽  
Zicheng Yu ◽  
Hongkai Li ◽  
...  

<p>Montane bogs—peat-forming ecosystems located in high elevation and receiving their water supply mostly from meteoric waters—are unique archives of past environmental changes. Studying these ecosystems and their responses to recent climate warming will help improve our understanding of the sensitivity of high-elevation peatlands to regional climate dynamics. Here, we report a post-bomb radiocarbon-dated, high-resolution, and multi-proxy record in Laobaishan bog (LBS), a mountaintop bog from the Changbai Mountains Range in Northeast China. We analyzed plant macrofossils and testate amoebae of a 41-cm peat core dated between 1970 and 2009 to document the ecohydrological response of peatland to the anthropogenic warming in recent decades. We quantitatively reconstruct the surface wetness changes of LBS bog using the first axis of the detrended correspondence analysis (DCA) of plant macrofossil assemblages and depth to water table (DWT) inferred by transfer function of testate amoebae assemblages. We distinguished two hydroclimate stages: the moist stage before the 1990s and the rapidly drying stage since the 1990s. During the moist stage, plant macrofossils were characterized by the low abundance of <em>Sphagnum capitifolium</em> and <em>Polytrichum strichum</em> that prefer dry habitats, and testate amoebae assemblages were dominated by low abundance of dry-adapted <em>Assulina muscorum</em> and <em>Corythion dubium</em>. High score of first axis and low DWT also suggested a moist habitat at LBS. After the transition into the drying stage, the abundance of <em>S. capitifolium</em> and <em>P. strichum</em> increased and that of <em>A. muscorum</em> and <em>C. dubium</em> showed similar trend. Score of first axis and DWT reconstructions show that LBS have experienced rapid surface desiccation since the 1990s. Based on the high-resolution gridded reanalysis data, these ecohydrological changes occurred with a rapid increase in temperature (~1°C) but without notable change in total precipitation during the growing season (May–September) since the 1990s. Besides, backward trajectory analysis showed no apparent changes in atmospheric circulation pattern since the 1990s, supporting our interpretation that the ecohydrological changes in LBS bog were induced by climate warming. These results demonstrate that the plant communities, microbial assemblages, and peatland hydrology of montane peatland show a sensitive response to climate warming that might be in larger amplitude than the low-elevation areas.</p>


Sign in / Sign up

Export Citation Format

Share Document