Magnetic Properties, Possible Martensitic Transformation, and Elastic Properties of Heusler Alloy Fe2NiSb from First-Principles Calculations

2016 ◽  
Vol 29 (4) ◽  
pp. 1019-1024 ◽  
Author(s):  
B. S. Chen ◽  
C. Wang ◽  
Y. Z. Li ◽  
C. X. Wang ◽  
X. Y. Guan
2019 ◽  
Vol 33 (07) ◽  
pp. 1950074
Author(s):  
Bin Yang ◽  
Zhinan Li ◽  
Fanghui Zhu ◽  
Liwu Jiang ◽  
Chuan-Hui Zhang

The electronic structure, martensitic transformation and magnetic properties of [Formula: see text] Heusler alloy were studied by first-principles calculations. It is found that the stable structure of austenitic [Formula: see text] is the ferromagnetic [Formula: see text] structure, and a martensitic transformation is possible to occur with the distortion degree of 1.26. By the analysis of the electronic structure, some results of magnetic moment are consistent with previous theoretical calculations.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36680-36689
Author(s):  
M. Ram ◽  
A. Saxena ◽  
Abeer E. Aly ◽  
A. Shankar

The electronic and magnetic properties of Mn2ZnSi(1−x)Gex (x = 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1.0) inverse Heusler alloys and Mn2ZnSi/Mn2ZnGe superlattice have been investigated using first-principles calculations.


2013 ◽  
Vol 710 ◽  
pp. 174-177
Author(s):  
Lei Feng ◽  
Fei Wang ◽  
Ju Gao ◽  
Jin Zhi Yin ◽  
Xiu Yan Luo

A new Heusler alloyV2NiGawith Hg2CuTi-type structure was investigated by first-principles calculations. The band structures and magnetic properties have been studied. The alloy has a total magnetic moment of 1.05μBper unit cell on first-principles calculations which is in agreement with theSlaterPauling(SP) rule. The magnetic moments ofV(1) atom andV(2) atom are 1.28μBand-0.44μBrespectively, so the alloy is a ferrimagnetism.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550064 ◽  
Author(s):  
Lin Feng ◽  
Wenxing Zhang ◽  
Enke Liu ◽  
Wenhong Wang ◽  
Guangheng Wu

The phase stability, electronic structure and magnetism of Pt 2-x Mn 1+x In (x = 0, 0.25, 0.5, 0.75, 1) alloys are studied by first-principles calculations. The possible magnetic martensitic transformation in this series has been investigated. For all the five compounds, the energy minimums occur around c/a = 1.30, and the energy differences between the austenitic and martensitic phases are large enough to overcome the resistance of phase transformation. By comparing the electronic structures of austenitic and martensitic phases, we can find that the phase stability is enhanced by the martensitic transformation. The magnetic structures of the austenitic and martensitic phases are also discussed.


Sign in / Sign up

Export Citation Format

Share Document