The Schouten Curvature Tensor and the Jacobi Equation in Sub-Riemannian Geometry

2021 ◽  
Vol 255 (2) ◽  
pp. 184-192
Author(s):  
V. R. Krym
1989 ◽  
Vol 39 (4) ◽  
pp. 1097-1108 ◽  
Author(s):  
Arkady Kheyfets ◽  
Norman J. LaFave ◽  
Warner A. Miller

Author(s):  
Piermarco Cannarsa ◽  
Wei Cheng ◽  
Albert Fathi

AbstractIf $U:[0,+\infty [\times M$ U : [ 0 , + ∞ [ × M is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$ \partial _{t}U+ H(x,\partial _{x}U)=0, $$ ∂ t U + H ( x , ∂ x U ) = 0 , where $M$ M is a not necessarily compact manifold, and $H$ H is a Tonelli Hamiltonian, we prove the set $\Sigma (U)$ Σ ( U ) , of points in $]0,+\infty [\times M$ ] 0 , + ∞ [ × M where $U$ U is not differentiable, is locally contractible. Moreover, we study the homotopy type of $\Sigma (U)$ Σ ( U ) . We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.


2012 ◽  
Vol 26 (27n28) ◽  
pp. 1243004 ◽  
Author(s):  
HOWARD E. BRANDT

A review is given of some aspects of the Riemannian geometry of quantum computation in which the quantum evolution is represented in the tangent space manifold of the special unitary unimodular group SU(2n) for n qubits. The Riemannian right-invariant metric, connection, curvature, geodesic equation for minimal complexity quantum circuits, Jacobi equation and the lifted Jacobi equation for varying penalty parameter are reviewed. Sharpened tools for calculating the geodesic derivative are presented. The geodesic derivative may facilitate the numerical investigation of conjugate points and the global characteristics of geodesic paths in the group manifold, the determination of optimal quantum circuits for carrying out a quantum computation, and the determination of the complexity of particular quantum algorithms.


2021 ◽  
Vol 244 ◽  
pp. 09006
Author(s):  
Ali Abdul Al Majeed Shihab ◽  
Aligadzhi Rustanov

In this paper, we study the properties of generalized Kenmotsu manifolds, consider the second-order differential geometric invariants of the Riemannian curvature tensor of generalized Kenmotsu manifolds (by the symmetry properties of the Riemannian geometry tensor). The concept of a tensor spectrum is introduced. Nine invariants are singled out and the geometric meaning of these invariants turning to zero are investigated. The identities characterizing the selected classes are singled out. Also, 9 classes of generalized Kenmotsu manifolds are distinguished, the local structure of 8 classes from the selected ones is obtained.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Author(s):  
Jennifer Coopersmith

Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document