Asymptotic Independence of Distant Partial Sums of Linear Processes

2005 ◽  
Vol 45 (4) ◽  
pp. 387-404 ◽  
Author(s):  
K. Bruzaite ◽  
M. Vaiciulis
Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

Here we apply different methods to establish the Gaussian approximation to linear statistics of a stationary sequence, including stationary linear processes, near-stationary processes, and discrete Fourier transforms of a strictly stationary process. More precisely, we analyze the asymptotic behavior of the partial sums associated with a short-memory linear process and prove, in particular, that if a weak limit theorem holds for the partial sums of the innovations then a related result holds for the partial sums of the linear process itself. We then move to linear processes with long memory and obtain the CLT under various dependence structures for the innovations by analyzing the asymptotic behavior of linear statistics. We also deal with the invariance principle for causal linear processes or for linear statistics with weakly associated innovations. The last section deals with discrete Fourier transforms, proving, via martingale approximation, central limit behavior at almost all frequencies under almost no condition except a regularity assumption.


Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

We start by stating the need for a Gaussian approximation for dependent structures in the form of the central limit theorem (CLT) or of the functional CLT. To justify the need to quantify the dependence, we introduce illustrative examples: linear processes, functions of stationary sequences, recursive sequences, dynamical systems, additive functionals of Markov chains, and self-interactions. The limiting behavior of the associated partial sums can be handled with tools developed throughout the book. We also present basic notions for stationary sequences of random variables: various definitions and constructions, and definitions of ergodicity, projective decomposition, and spectral density. Special attention is given to dynamical systems, as many of our results also apply in this context. The chapter also surveys the basic theory of the convergence of stochastic processes in distribution, and introduces the reader to tightness, finite-dimensional convergence, and the need for maximal inequalities. It ends with the concepts of the moderate deviations principle and its functional form.


1971 ◽  
Vol 3 (02) ◽  
pp. 404-425
Author(s):  
Howard G. Tucker

The aim of this study is an investigation of the joint limiting distribution of the sequence of partial sums of the positive parts and negative parts of a sequence of independent identically distributed random variables. In particular, let {Xn} be a sequence of independent identically distributed random variables with common distribution functionF, assumeFis in the domain of attraction of a stable distribution with characteristic exponent α, 0 < α ≦ 2, and let {Bn} be normalizing coefficients forF. Let us denoteXn+=XnI[Xn> 0]andXn−= −XnI[Xn<0], so thatXn=Xn+-Xn−. LetF+andF−denote the distribution functions ofX1+andX1−respectively, and letSn(+)=X1++ · · · +Xn+,Sn(-)=X1−+ · · · +Xn−. The problem considered here is to find under what conditions there exist sequences of real numbers {an} and {bn} such that the joint distribution of (Bn-1Sn(+)+an,Bn-1Sn(-)+bn) converges to that of two independent random variables (U, V). As might be expected, different results are obtained when α < 2 and when α = 2. When α < 2, there always exist such sequences so that the above is true, and in this case bothUandVare stable with characteristic exponent a, or one has such a stable distribution and the other is constant. When α = 2, and if 0 < ∫x2dF(x) < ∞, then there always exist such sequences such that the above convergence takes place; bothUandVare normal (possibly one is a constant), and if neither is a constant, thenUandVarenotindependent. If α = 2 and ∫x2dF(x) = ∞, then at least one ofF+,F−is in the domain of partial attraction of the normal distribution, and a modified statement on the independence ofUandVholds. Various specialized results are obtained for α = 2.


1971 ◽  
Vol 3 (2) ◽  
pp. 404-425 ◽  
Author(s):  
Howard G. Tucker

The aim of this study is an investigation of the joint limiting distribution of the sequence of partial sums of the positive parts and negative parts of a sequence of independent identically distributed random variables. In particular, let {Xn} be a sequence of independent identically distributed random variables with common distribution function F, assume F is in the domain of attraction of a stable distribution with characteristic exponent α, 0 < α ≦ 2, and let {Bn} be normalizing coefficients for F. Let us denote Xn+ = XnI[Xn > 0] and Xn− = − XnI[Xn<0], so that Xn = Xn+ - Xn−. Let F+ and F− denote the distribution functions of X1+ and X1− respectively, and let Sn(+) = X1+ + · · · + Xn+, Sn(-) = X1− + · · · + Xn−. The problem considered here is to find under what conditions there exist sequences of real numbers {an} and {bn} such that the joint distribution of (Bn-1Sn(+) + an, Bn-1Sn(-) + bn) converges to that of two independent random variables (U, V). As might be expected, different results are obtained when α < 2 and when α = 2. When α < 2, there always exist such sequences so that the above is true, and in this case both U and V are stable with characteristic exponent a, or one has such a stable distribution and the other is constant. When α = 2, and if 0 < ∫ x2dF(x) < ∞, then there always exist such sequences such that the above convergence takes place; both U and V are normal (possibly one is a constant), and if neither is a constant, then U and V are not independent. If α = 2 and ∫ x2dF(x) = ∞, then at least one of F+, F− is in the domain of partial attraction of the normal distribution, and a modified statement on the independence of U and V holds. Various specialized results are obtained for α = 2.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3925-3935
Author(s):  
Yu Miao ◽  
Qinghui Gao ◽  
Shuili Zhang

In this paper, we consider the following linear process Xn = ?? i=-? Ci?n-i, n ? Z, and establish the central limit theorem of the randomly indexed partial sums Svn := X1 +... + Xvn, where {ci,i?Z} is a sequence of real numbers, {?n,n?Z} is a stationary m-dependent sequence and {vn;n?1} is a sequence of positive integer valued random variables. In addition, in order to show the main result, we prove the central limit theorems for randomly indexed m-dependent random variables, which improve some known results.


2020 ◽  
Vol 57 (2) ◽  
pp. 637-656
Author(s):  
Martin Wendler ◽  
Wei Biao Wu

AbstractThe limit behavior of partial sums for short range dependent stationary sequences (with summable autocovariances) and for long range dependent sequences (with autocovariances summing up to infinity) differs in various aspects. We prove central limit theorems for partial sums of subordinated linear processes of arbitrary power rank which are at the border of short and long range dependence.


Sign in / Sign up

Export Citation Format

Share Document