scholarly journals The vibro-impact capsule system in millimetre scale: numerical optimisation and experimental verification

Meccanica ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1885-1902
Author(s):  
Yang Liu ◽  
Joseph Páez Chávez ◽  
Jiajia Zhang ◽  
Jiyuan Tian ◽  
Bingyong Guo ◽  
...  

Abstract The vibro-impact capsule system has been studied extensively in the past decade because of its research challenges as a piecewise-smooth dynamical system and broad applications in engineering and healthcare technologies. This paper reports our team’s first attempt to scale down the prototype of the vibro-impact capsule to millimetre size, which is 26 mm in length and 11 mm in diameter, aiming for small-bowel endoscopy. Firstly, an existing mathematical model of the prototype and its mathematical formulation as a piecewise-smooth dynamical system are reviewed in order to carry out numerical optimisation for the prototype by means of path-following techniques. Our numerical analysis shows that the prototype can achieve a high progression speed up to 14.4 mm/s while avoiding the collision between the inner mass and the capsule which could lead to less propulsive force on the capsule so causing less discomfort on the patient. Secondly, the experimental rig and procedure for testing the prototype are introduced, and some preliminary experimental results are presented. Finally, experimental results are compared with the numerical results to validate the optimisation as well as the feasibility of the vibro-impact technique for the potential of a controllable endoscopic procedure.

2018 ◽  
Vol 95 (2) ◽  
pp. 1165-1188 ◽  
Author(s):  
Jin-Song Pei ◽  
Joseph P. Wright ◽  
François Gay-Balmaz ◽  
James L. Beck ◽  
Michael D. Todd

2014 ◽  
Vol 378 (42) ◽  
pp. 3085-3092
Author(s):  
Elena Blokhina ◽  
Dimitri Galayko ◽  
Danièle Fournier-Prunaret ◽  
Orla Feely

Author(s):  
Harry Dankowicz ◽  
Jenny Jerrelind

A method is presented for controlling the persistence of a local attractor near a grazing periodic trajectory in a piecewise smooth dynamical system in the presence of discontinuous jumps in the state associated with intersections with system discontinuities. In particular, it is shown that a discrete, linear feedback strategy may be employed to retain the existence of an attractor near the grazing trajectory, such that the deviation of the attractor from the grazing trajectory goes to zero as the system parameters approach those corresponding to grazing contact. The implementation relies on a local analysis of the near-grazing dynamics using the concept of discontinuity mappings. Numerical results are presented for a linear and a nonlinear oscillator.


2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


2021 ◽  
Vol 421 ◽  
pp. 132859
Author(s):  
A. Bensoussan ◽  
A. Brouste ◽  
F.B. Cartiaux ◽  
C. Mathey ◽  
L. Mertz

Sign in / Sign up

Export Citation Format

Share Document