Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis

2012 ◽  
Vol 39 (12) ◽  
pp. 10627-10635 ◽  
Author(s):  
Young Ho Lee ◽  
Sang-Cheol Bae ◽  
Sung Jae Choi ◽  
Jong Dae Ji ◽  
Gwan Gyu Song
2018 ◽  
Vol 77 (7) ◽  
pp. 1078-1084 ◽  
Author(s):  
Yong-Fei Wang ◽  
Yan Zhang ◽  
Zhengwei Zhu ◽  
Ting-You Wang ◽  
David L Morris ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic component in its pathogenesis. Through genome-wide association studies (GWAS), we recently identified 10 novel loci associated with SLE and uncovered a number of suggestive loci requiring further validation. This study aimed to validate those loci in independent cohorts and evaluate the role of SLE genetics in drug repositioning.MethodsWe conducted GWAS and replication studies involving 12 280 SLE cases and 18 828 controls, and performed fine-mapping analyses to identify likely causal variants within the newly identified loci. We further scanned drug target databases to evaluate the role of SLE genetics in drug repositioning.ResultsWe identified three novel loci that surpassed genome-wide significance, including ST3AGL4 (rs13238909, pmeta=4.40E-08), MFHAS1 (rs2428, pmeta=1.17E-08) and CSNK2A2 (rs2731783, pmeta=1.08E-09). We also confirmed the association of CD226 locus with SLE (rs763361, pmeta=2.45E-08). Fine-mapping and functional analyses indicated that the putative causal variants in CSNK2A2 locus reside in an enhancer and are associated with expression of CSNK2A2 in B-lymphocytes, suggesting a potential mechanism of association. In addition, we demonstrated that SLE risk genes were more likely to be interacting proteins with targets of approved SLE drugs (OR=2.41, p=1.50E-03) which supports the role of genetic studies to repurpose drugs approved for other diseases for the treatment of SLE.ConclusionThis study identified three novel loci associated with SLE and demonstrated the role of SLE GWAS findings in drug repositioning.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
John J. Connolly ◽  
Hakon Hakonarson

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, known to have a strong genetic component. Concordance between monozygotic twins is approximately 30–40%, which is 8–20 times higher than that of dizygotic twins. In the last decade, genome-wide approaches to understanding SLE have yielded many candidate genes, which are important to understanding the pathophysiology of the disease and potential targets for pharmaceutical intervention. In this paper, we focus on the role of cytokines and examine how genome-wide association studies, copy number variation studies, and next-generation sequencing are being employed to understand the etiology of SLE. Prominent genes identified by these approaches includeBLK, FCγR3B,andTREX1. Our goal is to present a brief overview of genomic approaches to SLE and to introduce some of the key discussion points pertinent to the field.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Manfred Relle ◽  
Andreas Schwarting

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS) in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haojie Lu ◽  
Jinhui Zhang ◽  
Zhou Jiang ◽  
Meng Zhang ◽  
Ting Wang ◽  
...  

BackgroundClinical and epidemiological studies have suggested systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are comorbidities and common genetic etiologies can partly explain such coexistence. However, shared genetic determinations underlying the two diseases remain largely unknown.MethodsOur analysis relied on summary statistics available from genome-wide association studies of SLE (N = 23,210) and RA (N = 58,284). We first evaluated the genetic correlation between RA and SLE through the linkage disequilibrium score regression (LDSC). Then, we performed a multiple-tissue eQTL (expression quantitative trait loci) weighted integrative analysis for each of the two diseases and aggregated association evidence across these tissues via the recently proposed harmonic mean P-value (HMP) combination strategy, which can produce a single well-calibrated P-value for correlated test statistics. Afterwards, we conducted the pleiotropy-informed association using conjunction conditional FDR (ccFDR) to identify potential pleiotropic genes associated with both RA and SLE.ResultsWe found there existed a significant positive genetic correlation (rg = 0.404, P = 6.01E-10) via LDSC between RA and SLE. Based on the multiple-tissue eQTL weighted integrative analysis and the HMP combination across various tissues, we discovered 14 potential pleiotropic genes by ccFDR, among which four were likely newly novel genes (i.e., INPP5B, OR5K2, RP11-2C24.5, and CTD-3105H18.4). The SNP effect sizes of these pleiotropic genes were typically positively dependent, with an average correlation of 0.579. Functionally, these genes were implicated in multiple auto-immune relevant pathways such as inositol phosphate metabolic process, membrane and glucagon signaling pathway.ConclusionThis study reveals common genetic components between RA and SLE and provides candidate associated loci for understanding of molecular mechanism underlying the comorbidity of the two diseases.


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


2020 ◽  
Vol 9 (3) ◽  
pp. 712 ◽  
Author(s):  
Erkan Demirkaya ◽  
Sezgin Sahin ◽  
Micol Romano ◽  
Qing Zhou ◽  
Ivona Aksentijevich

Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it’s prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.


Sign in / Sign up

Export Citation Format

Share Document