Robust exponential stability of interconnected switched systems with mixed delays and impulsive effect

2019 ◽  
Vol 97 (1) ◽  
pp. 679-696 ◽  
Author(s):  
Huanbin Xue ◽  
Jiye Zhang
2013 ◽  
Vol 479-480 ◽  
pp. 983-988
Author(s):  
Jenq Der Chen ◽  
Chang Hua Lien ◽  
Ker Wei Yu ◽  
Chin Tan Lee ◽  
Ruey Shin Chen ◽  
...  

In this paper, the switching signal design to robust exponential stability for discrete-time switched systems with interval time-varying delay is considered. LMI-based conditions are proposed to guarantee the global exponential stability for such system with parametric perturbations by using a switching signal. The appropriate Lyapunov functionals are used to reduce the conservativeness of systems. Finally, a numerical example is illustrated to show the main results.


2012 ◽  
Vol 17 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Xiu Liu ◽  
Shouming Zhong ◽  
Xiuyong Ding

This paper deals with a class of uncertain nonlinear impulsive switched systems with time-varying delays. A novel type of piecewise Lyapunov functionals is constructed to derive the exponential stability. This type of functionals can efficiently overcome the impulsive and switching jump of adjacent Lyapunov functionals at impulsive switching times. Based on this, a delay-independent sufficient condition of exponential stability is presented by minimum dwell time. Finally, an illustrative numerical example is given to show the effectiveness of the obtained theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yanke Du ◽  
Rui Xu

A class of interval Cohen-Grossberg neural networks with time-varying delays and infinite distributed delays is investigated. By employing H-matrix and M-matrix theory, homeomorphism techniques, Lyapunov functional method, and linear matrix inequality approach, sufficient conditions are established for the existence, uniqueness, and global robust exponential stability of the equilibrium point and the periodic solution to the neural networks. Our results improve some previously published ones. Finally, numerical examples are given to illustrate the feasibility of the theoretical results and further to exhibit that there is a characteristic sequence of bifurcations leading to a chaotic dynamics, which implies that the system admits rich and complex dynamics.


Sign in / Sign up

Export Citation Format

Share Document