scholarly journals Dynamics of a hybrid vibro-impact oscillator: canonical formalism

Author(s):  
Maor Farid
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Firas Turki ◽  
Hassène Gritli ◽  
Safya Belghith

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.


2021 ◽  
Vol 42 (5) ◽  
pp. 641-648
Author(s):  
Shichao Ma ◽  
Xin Ning ◽  
Liang Wang ◽  
Wantao Jia ◽  
Wei Xu

AbstractIt is well-known that practical vibro-impact systems are often influenced by random perturbations and external excitation forces, making it challenging to carry out the research of this category of complex systems with non-smooth characteristics. To address this problem, by adequately utilizing the stochastic response analysis approach and performing the stochastic response for the considered non-smooth system with the external excitation force and white noise excitation, a modified conducting process has proposed. Taking the multiple nonlinear parameters, the non-smooth parameters, and the external excitation frequency into consideration, the steady-state stochastic P-bifurcation phenomena of an elastic impact oscillator are discussed. It can be found that the system parameters can make the system stability topology change. The effectiveness of the proposed method is verified and demonstrated by the Monte Carlo (MC) simulation. Consequently, the conclusions show that the process can be applied to stochastic non-autonomous and non-smooth systems.


1991 ◽  
Vol 43 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Antoine Royer

1992 ◽  
Vol 9 (10) ◽  
pp. 2217-2229 ◽  
Author(s):  
A Foussats ◽  
C Repetto ◽  
O P Zandron ◽  
O S Zandron

Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.


Author(s):  
Kannan Marudachalam ◽  
Faruk H. Bursal

Abstract Systems with discontinuous dynamics can be found in diverse disciplines. Meshing gears with backlash, impact dampers, relative motion of components that exhibit stick-slip phenomena axe but a few examples from mechanical systems. These form a class of dynamical systems where the nonlinearity is so severe that analysis becomes formidable, especially when global behavior needs to be known. Only recently have researchers attempted to investigate such systems in terms of modern dynamical systems theory. In this work, an impact oscillator with two-sided rigid constraints is used as a paradigm for studying the characteristics of discontinuous dynamical systems. The oscillator has zero stiffness and is subjected to harmonic excitation. The system is linear without impacts. However, the impacts introduce nonlinearity and dissipation (assuming inelastic impacts). A numerical algorithm is developed for studying the global dynamics of the system. A peculiar type of solution in which the trajectories in phase space from a certain set of initial conditions merge in finite time, making the dynamics non-invertible, is investigated. Also, the effect of “grazing,” a behavior common to constrained systems, on the dynamics of the system is studied. Based on the experience gained in studying this system, the need for an efficient general-purpose numerical algorithm for solving discontinuous dynamical systems is motivated. Investigation of stress, vibration, wear, noise, etc. that are associated with impact phenomena can benefit greatly from such an algorithm.


1995 ◽  
Vol 52 (12) ◽  
pp. 6831-6839 ◽  
Author(s):  
José Navarro-Salas ◽  
Miguel Navarro ◽  
César F. Talavera

1999 ◽  
Vol 562 (1-2) ◽  
pp. 291-314 ◽  
Author(s):  
L. Łukaszuk ◽  
E. Leader ◽  
A. Johansen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document