Volume of precursor solution effect on the properties of SnO2 thin films prepared by nebulized spray pyrolysis technique

2018 ◽  
Vol 50 (9) ◽  
Author(s):  
S. Palanichamy ◽  
J. Raj Mohamed ◽  
P. S. Satheesh Kumar ◽  
S. Pandiarajan ◽  
L. Amalraj
2018 ◽  
Vol 4 (5) ◽  
pp. 542-545 ◽  
Author(s):  
R. Shabu ◽  
A. Moses Ezhil Raj

As major attention has been paid to transition metal oxide semiconductor suitable for solar cell, photo detector and gas sensor, present study embark on the structural, optical and electrical characterization of Ag doped CuO thin films prepared using chemical spray pyrolysis technique at the constant substrate temperature of 350 �C. For Ag doping, various concentrations of silver acetate (0.5-3.0 wt.%) was used in the sprayed precursor solution. Confirmed monoclinic lattice shows the tenorite phase formation of CuO in the pure and Ag doped films. The optical band gap of the films was in the range of 2.4 -3.4 eV. A minimum resistivity of 0.0017x103 ohmcm was achieved in the 0.5 wt.% Ag doped film, and its optical band gap was 2.74 eV.


2018 ◽  
Vol 17 (03) ◽  
pp. 1760037 ◽  
Author(s):  
A. Nancy Anna Anasthasiya ◽  
K. Gowtham ◽  
R. Shruthi ◽  
R. Pandeeswari ◽  
B. G. Jeyaprakash

The spray pyrolysis technique was employed to deposit V2O5 thin films on a glass substrate. By varying the precursor solution volume from 10[Formula: see text]mL to 50[Formula: see text]mL in steps of 10[Formula: see text]mL, films of various thicknesses were prepared. Orthorhombic polycrystalline V2O5 films were inferred from the XRD pattern irrespective of precursor solution volume. The micro-Raman studies suggested that annealed V2O5 thin film has good crystallinity. The effect of precursor solution volume on morphological and optical properties were analysed and reported.


2009 ◽  
Vol 293 ◽  
pp. 99-105 ◽  
Author(s):  
Girjesh Singh ◽  
S.B. Shrivastava ◽  
Deepti Jain ◽  
Swati Pandya ◽  
V. Ganesan

During the last two decades, the use of transparent conducting films of non-stoichiometric and doped metallic oxides for the conversion of solar energy into electrical energy has assumed great significance. A variety of materials, using various deposition techniques, has been tried for this purpose [1-3]. Among these various materials, zinc oxide (ZnO) is one of the prominent oxide semiconductors suitable for photovoltaic applications because of its high electrical conductivity and optical transmittance in the visible region of the solar spectrum [4]. Furthermore, thin films of ZnO have shown good chemical stability against hydrogen plasma, which is of prime importance in a-Si:H-based solar-cell fabrication. Thus, zinc oxide can serve as a good candidate for replacing SnO2 and indium tin oxide (ITO) films in Si:H-based solar cells. One of the outstanding features of ZnO is its large excitonic binding energy, i.e. 60meV, leading to the existence of excitons at room temperature and even at higher temperatures [5-8]. These unique characteristics have generated a wide range of applications of ZnO. For example, gas sensors [9], surface acoustic devices [10], transparent electrodes and solar cells. Many techniques are used for preparing the transparent conducting ZnO films, such as RF sputtering [11], evaporation [12], chemical vapour deposition [13], ion beam sputtering [14] and spray pyrolysis [15–18]. Among these, the spray pyrolysis technique has attracted considerable attention due to its simplicity and large-scale production combined with low-cost fabrication. By using this technique, one can produce large-area coatings without any need for ultra-high vacuum. Thus, the capital cost and the production cost of high-quality zinc oxide semiconductor thin films are lowest among all other techniques. In the present work, we have synthesized ZnO films by using the spray pyrolysis technique. A number of films have been prepared by changing the molarity of the precursor solution. The prepared films have been characterized with regard to their structural, morphological and electrical properties.


1994 ◽  
Vol 102 (1183) ◽  
pp. 296-298 ◽  
Author(s):  
Isao YAGI ◽  
Katsutoshi KAKIZAWA ◽  
Kenji MURAKAMI ◽  
Shoji KANEKO

Sign in / Sign up

Export Citation Format

Share Document