scholarly journals The Random Normal Matrix Model: Insertion of a Point Charge

Author(s):  
Yacin Ameur ◽  
Nam-Gyu Kang ◽  
Seong-Mi Seo

AbstractIn this article, we study microscopic properties of a two-dimensional Coulomb gas ensemble near a conical singularity arising from insertion of a point charge in the bulk of the droplet. In the determinantal case, we characterize all rotationally symmetric scaling limits (“Mittag-Leffler fields”) and obtain universality of them when the underlying potential is algebraic. Applications include a central limit theorem for $\log |p_{n}(\zeta )|$ log | p n ( ζ ) | where pn is the characteristic polynomial of an n:th order random normal matrix.

1968 ◽  
Vol 8 (3) ◽  
pp. 591-595
Author(s):  
V. Paulauskas ◽  
A. Slušnys

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: В. Паулаускас, А. Слушнис. Оценка скорости сходимости в двумерной центральной предельной теореме V. Paulauskas, A. Slušnys. Konvergavimo greičio įvertinimas dvimatėje centrinėje ribinėje teoremoje


2019 ◽  
Vol 31 (1) ◽  
pp. 167-185
Author(s):  
Yuk-Kam Lau ◽  
Ming Ho Ng ◽  
Yingnan Wang

Abstract A two-dimensional central limit theorem for the eigenvalues of {\mathrm{GL}(n)} Hecke–Maass cusp forms is newly derived. The covariance matrix is diagonal and hence verifies the statistical independence between the real and imaginary parts of the eigenvalues. We also prove a central limit theorem for the number of weighted eigenvalues in a compact region of the complex plane, and evaluate some moments of eigenvalues for the Hecke operator {T_{p}} which reveal interesting interferences.


Sign in / Sign up

Export Citation Format

Share Document