Sojourn times in (discrete) time shared systems and their continuous time limits

2008 ◽  
Vol 60 (3-4) ◽  
pp. 171-191
Author(s):  
Arzad A. Kherani
1989 ◽  
Vol 26 (4) ◽  
pp. 744-756 ◽  
Author(s):  
Gerardo Rubino ◽  
Bruno Sericola

Sojourn times of Markov processes in subsets of the finite state space are considered. We give a closed form of the distribution of the nth sojourn time in a given subset of states. The asymptotic behaviour of this distribution when time goes to infinity is analyzed, in the discrete time and the continuous-time cases. We consider the usually pseudo-aggregated Markov process canonically constructed from the previous one by collapsing the states of each subset of a given partition. The relation between limits of moments of the sojourn time distributions in the original Markov process and the moments of the corresponding holding times of the pseudo-aggregated one is also studied.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hampus Engsner ◽  
Filip Lindskog

AbstractWe consider multi-period cost-of-capital valuation of a liability cash flow subject to repeated capital requirements that are partly financed by capital injections from capital providers with limited liability. Limited liability means that, in any given period, the capital provider is not liable for further payment in the event that the capital provided at the beginning of the period turns out to be insufficient to cover both the current-period payments and the updated value of the remaining cash flow. The liability cash flow is modeled as a continuous-time stochastic process on {[0,T]}. The multi-period structure is given by a partition of {[0,T]} into subintervals, and on the corresponding finite set of times, a discrete-time cost-of-capital-margin process is defined. Our main objective is the analysis of existence and properties of continuous-time limits of discrete-time cost-of-capital-margin processes corresponding to a sequence of partitions whose meshes tend to zero. Moreover, we provide explicit expressions for the limit processes when cash flows are given by Itô diffusions and processes with independent increments.


1989 ◽  
Vol 26 (04) ◽  
pp. 744-756 ◽  
Author(s):  
Gerardo Rubino ◽  
Bruno Sericola

Sojourn times of Markov processes in subsets of the finite state space are considered. We give a closed form of the distribution of the nth sojourn time in a given subset of states. The asymptotic behaviour of this distribution when time goes to infinity is analyzed, in the discrete time and the continuous-time cases. We consider the usually pseudo-aggregated Markov process canonically constructed from the previous one by collapsing the states of each subset of a given partition. The relation between limits of moments of the sojourn time distributions in the original Markov process and the moments of the corresponding holding times of the pseudo-aggregated one is also studied.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

Psychometrika ◽  
2021 ◽  
Author(s):  
Oisín Ryan ◽  
Ellen L. Hamaker

AbstractNetwork analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.


1967 ◽  
Vol 4 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. N. Darroch ◽  
E. Seneta

In a recent paper, the authors have discussed the concept of quasi-stationary distributions for absorbing Markov chains having a finite state space, with the further restriction of discrete time. The purpose of the present note is to summarize the analogous results when the time parameter is continuous.


Sign in / Sign up

Export Citation Format

Share Document