Modification of ultra-high-molecular-weight polyethylene fibers and powders using low-temperature plasma

2017 ◽  
Vol 66 (4) ◽  
pp. 577-586 ◽  
Author(s):  
A. B. Gilman ◽  
А. А. Kuznetsov ◽  
А. N. Ozerin
2020 ◽  
pp. 77-78

The use of ultra-high molecular weight polyethylene (UHMW PE) for the manufacture of various parts, in particular cuffs for hydraulic drives, is proposed. The properties and advantages of UHMW PE in comparison with other polyethylene materials are considered. Keywords ultra-high molecular weight polyethylene, hydraulic pump, hydraulic motor, hydraulic control valve, hydraulic oil, low temperature. [email protected]


2020 ◽  
Vol 30 (1) ◽  
pp. 49-51 ◽  
Author(s):  
Dilyus I. Chukov ◽  
Dmitrii D. Zherebtsov ◽  
Leonid K. Olifirov ◽  
Valerii G. Torokhov ◽  
Aleksey V. Maksimkin

2014 ◽  
Vol 101 ◽  
pp. 1-10 ◽  
Author(s):  
Jen-taut Yeh ◽  
Chih-Chen Tsai ◽  
Chuen-Kai Wang ◽  
Jhih-Wun Shao ◽  
Ming-Zheng Xiao ◽  
...  

2017 ◽  
Vol 47 (6) ◽  
pp. 1357-1377 ◽  
Author(s):  
Dongliang Dai ◽  
Meiwu Shi

This study introduced trimethylolpropane trimethacrylate into ultra-high molecular weight polyethylene fibers through supercritical CO2 pretreatment before the fibers were irradiated under an electron beam. Significant differences, emerging in the ultra-high molecular weight polyethylene fibers’ gel content, mechanical properties, and creep property according to their different irradiation doses, were studied through one-way analysis of variance. Regression equations were established between the irradiation dose and the gel content, breaking strength, elongation at break, and creep rate by regression analysis. A reasonable irradiation dosage range was determined after a verification experiment and the impact trends were analyzed; additionally, the sensitized irradiation crosslinking mechanism of ultra-high molecular weight polyethylene fibers was preliminarily examined. Then the surface morphology, chemical structures, thermal properties, and crystal properties of treated ultra-high molecular weight polyethylene fibers were measured. The results showed that as the irradiation dose increased, the gel content first rose and then declined; the breaking strength decreased continuously; the elongation at break increased at first and then decreased; and the creep rate originally fell and then rose before finally declining slowly. Electron beam irradiation had a significant etching effect on the fibers’ surface, and both the melting point and crystallinity decreased slightly.


Sign in / Sign up

Export Citation Format

Share Document