Optimizing bag-of-tasks scheduling on cloud data centers using hybrid swarm-intelligence meta-heuristic

Author(s):  
Amit Chhabra ◽  
Kuo-Chan Huang ◽  
Nebojsa Bacanin ◽  
Tarik A. Rashid
2021 ◽  
Vol 11 (13) ◽  
pp. 5849
Author(s):  
Nimra Malik ◽  
Muhammad Sardaraz ◽  
Muhammad Tahir ◽  
Babar Shah ◽  
Gohar Ali ◽  
...  

Cloud computing is a rapidly growing technology that has been implemented in various fields in recent years, such as business, research, industry, and computing. Cloud computing provides different services over the internet, thus eliminating the need for personalized hardware and other resources. Cloud computing environments face some challenges in terms of resource utilization, energy efficiency, heterogeneous resources, etc. Tasks scheduling and virtual machines (VMs) are used as consolidation techniques in order to tackle these issues. Tasks scheduling has been extensively studied in the literature. The problem has been studied with different parameters and objectives. In this article, we address the problem of energy consumption and efficient resource utilization in virtualized cloud data centers. The proposed algorithm is based on task classification and thresholds for efficient scheduling and better resource utilization. In the first phase, workflow tasks are pre-processed to avoid bottlenecks by placing tasks with more dependencies and long execution times in separate queues. In the next step, tasks are classified based on the intensities of the required resources. Finally, Particle Swarm Optimization (PSO) is used to select the best schedules. Experiments were performed to validate the proposed technique. Comparative results obtained on benchmark datasets are presented. The results show the effectiveness of the proposed algorithm over that of the other algorithms to which it was compared in terms of energy consumption, makespan, and load balancing.


2017 ◽  
Vol 26 (1) ◽  
pp. 113-128
Author(s):  
Gamal Eldin I. Selim ◽  
Mohamed A. El-Rashidy ◽  
Nawal A. El-Fishawy

2021 ◽  
Vol 11 (9) ◽  
pp. 3870
Author(s):  
Jeongsu Kim ◽  
Kyungwoon Lee ◽  
Gyeongsik Yang ◽  
Kwanhoon Lee ◽  
Jaemin Im ◽  
...  

This paper investigates the performance interference of blockchain services that run on cloud data centers. As the data centers offer shared computing resources to multiple services, the blockchain services can experience performance interference due to the co-located services. We explore the impact of the interference on Fabric performance and develop a new technique to offer performance isolation for Hyperledger Fabric, the most popular blockchain platform. First, we analyze the characteristics of the different components in Hyperledger Fabric and show that Fabric components have different impacts on the performance of Fabric. Then, we present QiOi, component-level performance isolation technique for Hyperledger Fabric. The key idea of QiOi is to dynamically control the CPU scheduling of Fabric components to cope with the performance interference. We implement QiOi as a user-level daemon and evaluate how QiOi mitigates the performance interference of Fabric. The evaluation results demonstrate that QiOi mitigates performance degradation of Fabric by 22% and improves Fabric latency by 2.5 times without sacrificing the performance of co-located services. In addition, we show that QiOi can support different ordering services and chaincodes with negligible overhead to Fabric performance.


2019 ◽  
Vol 18 (1) ◽  
pp. 149-168 ◽  
Author(s):  
Eduard Zharikov ◽  
Sergii Telenyk ◽  
Petro Bidyuk

Sign in / Sign up

Export Citation Format

Share Document