A 4-step Blockchain Equipped Approach to Energy Efficiency and Routing in Homing Pigeon Based Delay Tolerant Network

Author(s):  
Priyanka Das ◽  
Tanmay De
2013 ◽  
Vol 32 (12) ◽  
pp. 3494-3498
Author(s):  
Yong-hui ZHANG ◽  
Zhang-xi LIN ◽  
Jian-hua LIU ◽  
Quan LIANG

Author(s):  
Shrikant Naidu ◽  
Suresh Chintada ◽  
Moushumi Sen ◽  
Seshadri Raghavan

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3895 ◽  
Author(s):  
Yuan Dong ◽  
Lina Pu ◽  
Yu Luo ◽  
Zheng Peng ◽  
Haining Mo ◽  
...  

In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications.


2014 ◽  
Vol 39 ◽  
pp. 302-309 ◽  
Author(s):  
Qaisar Ayub ◽  
Sulma Rashid ◽  
M. Soperi Mohd Zahid ◽  
Abdul Hanan Abdullah

2019 ◽  
Vol 25 (5) ◽  
pp. 2675-2695 ◽  
Author(s):  
Amartya Mukherjee ◽  
Nilanjan Dey ◽  
Rajesh Kumar ◽  
B. K. Panigrahi ◽  
Aboul Ella Hassanien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document